Advances in platinum chemotherapeutics.

Chemistry

Nanoscale Organisation and Dynamics Group, College of Health and Science, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW, 1797 Australia.

Published: June 2010

The approved platinum(II)-based anticancer agents cisplatin, carboplatin and oxaliplatin are widely utilised in the clinic, although with numerous disadvantages. With the aim of circumventing unwanted side-effects, a great deal of research is being conducted in the areas of cancer-specific targeting, drug administration and drug delivery. The targeting of platinum complexes to cancerous tissues can be achieved by the attachment of small molecules with biological significance. In addition, the administration of platinum complexes in the form of platinum(IV) allows for intracellular reduction to release the active form of the drug, cisplatin. Drug delivery includes such technologies as liposomes, dendrimers, polymers and nanotubes, with all showing promise for the delivery of platinum compounds. In this paper we highlight some of the recent advances in the field of platinum chemotherapeutics, with a focus on the technologies that attempt to utilise the cytotoxic nature of cisplatin, whilst improving drug targeting to reduce side-effects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201000148DOI Listing

Publication Analysis

Top Keywords

platinum chemotherapeutics
8
drug delivery
8
platinum complexes
8
drug
5
advances platinum
4
chemotherapeutics approved
4
approved platinumii-based
4
platinumii-based anticancer
4
anticancer agents
4
agents cisplatin
4

Similar Publications

Platinum nanoparticles (PtNPs) offer significant promise in cancer therapy by enhancing the therapeutic effects of platinum-based chemotherapies like cisplatin. These nanoparticles improve tumor targeting, reduce off-target effects, and help overcome drug resistance. PtNPs exert their anti-cancer effects primarily through the generation of reactive oxygen species (ROS), which induce oxidative stress and apoptosis in cancer cells.

View Article and Find Full Text PDF

Ruthenium(II)-mercapto complexes induce cell damage via apoptosis pathway on ovarian cancer cells.

J Inorg Biochem

December 2024

Departament of Chemistry, Universidade Federal de São Carlos (UFSCar), 13561-905 São Carlos, SP, Brazil. Electronic address:

Ovarian cancer represents a leading cause of cancer-related deaths in women worldwide. Chemotherapeutic agents are usually employed to treat the patients, and Ruthenium(II)-based compounds have been investigated as possible substitutes for platinum drugs. In this work, we studied three different Ru(II)-phosphine-mercapto complexes (1-3) as potential cytotoxic agents against A2780 and A2780-cisR ovarian cancer cells.

View Article and Find Full Text PDF

Shared chemoresistance genes in ESCC and cervical Cancer: Insights from pharmacogenomics and Mendelian randomization.

Int Immunopharmacol

January 2025

Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China; Ultrapathology (Biomedical Electron Microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; FuRong Laboratory, Changsha City, Hunan Province, China. Electronic address:

Background: Neoadjuvant chemotherapy, particularly the use of platinum-based compounds and taxanes, is pivotal in the treatment of epithelial-derived tumors, such as cervical cancer and esophageal squamous cell carcinoma (ESCC); however, resistance remains a significant challenge. Utilizing Mendelian randomization (MR) with pharmacogenomics offers a novel approach to understanding the genetic underpinnings of drug responses, thereby aiding in personalized treatment.

Methods: Single-cell RNA sequencing (scRNA-seq) analysis revealed a shared cellular subpopulation of CD8 + T effector memory (CD8 + TEM) cells that are pivotal in mediating chemotherapy resistance in ESCC and cervical cancer.

View Article and Find Full Text PDF

The aim of the review was to systematically review real-world data on the effectiveness and safety of pembrolizumab in recurrent/metastatic/unresectable head and neck squamous cell cancer (HNSCC) patients. Two independent reviewers retrieved the studies separately and simultaneously. PubMed, Embase, Scopus, Web of Science, and Cochrane Central were searched for prospective and retrospective studies on recurrent/metastatic/unresectable HNSCC patients treated with either pembrolizumab monotherapy or pembrolizumab combination therapy published till November 2024.

View Article and Find Full Text PDF

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!