Previously, the wheat non-specific lipid transfer proteins (TaLTP), members of a small multigene family, were reported to evidence a complex pattern of expression regulation. In order to assess further the expression diversity of the TaLTP genes, we have attempted to evaluate their expression profiles in responses to abiotic stresses, using semi-quantitative RT-PCR. The expression profiles generated herein revealed that the TaLTP genes in group A evidenced highly similar responses against abiotic stresses, whereas differential expression patterns among genes in each group were also observed. A total of seven promoters were fused to a GUS reporter gene and the recombinants were introduced into Arabidopsis, while three promoters evidenced non-detectible GUS activity. The promoters of TaLTP1, TaLTP7, and TaLTP10 included in group A drove strong expressions during plant development with overlapping patterns, in large part, but also exhibited distinct expression pattern, thereby suggesting subfunctionalization processing over evolutionary time. However, only trace expression in cotyledons, young emerged leaves, and epidermal cell layers of flower ovaries was driven by the promoter of TaLTP3 of group B. These results indicate that their distinct physiological functions appear to be accomplished by a subfunctionalization process involving degenerative mutations in regulatory regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10709-010-9467-7 | DOI Listing |
Sci Rep
November 2018
University of Adelaide, School of Agriculture, Food & Wine, Waite Campus, Urrbrae, South Australia, 5064, Australia.
Non-specific Lipid Transfer Proteins (nsLTPs) are involved in numerous biological processes. To date, only a fraction of wheat (Triticum aestivum L.) nsLTPs (TaLTPs) have been identified, and even fewer have been functionally analysed.
View Article and Find Full Text PDFPlant Cell Rep
October 2014
State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China.
Three TaLTPs were found to enhance chilling tolerance of transgenic Arabidopsis, which were characterized by analyzes of promoter-GUS activity, subcellular localization, chromosomal location and transcriptional profile. Non-specific lipid transfer proteins (nsLTP) are abundantly expressed in plants, however, their functions are still unclear. In this study, we primarily characterized the functions of 3 type I TaLTP genes that were localized on chromosomes 3A, 3B, and 5D, respectively.
View Article and Find Full Text PDFGenetica
August 2010
Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea.
Previously, the wheat non-specific lipid transfer proteins (TaLTP), members of a small multigene family, were reported to evidence a complex pattern of expression regulation. In order to assess further the expression diversity of the TaLTP genes, we have attempted to evaluate their expression profiles in responses to abiotic stresses, using semi-quantitative RT-PCR. The expression profiles generated herein revealed that the TaLTP genes in group A evidenced highly similar responses against abiotic stresses, whereas differential expression patterns among genes in each group were also observed.
View Article and Find Full Text PDFPlanta
March 2007
INRA, UMR 1096 PIA, 2 place Viala, 34060 Montpellier, France.
Plant non-specific lipid transfer proteins (nsLTPs) are encoded by a multigene family and support physiological functions, which remain unclear. We adapted an efficient ligation-mediated polymerase chain reaction (LM-PCR) procedure that enabled isolation of 22 novel Triticum aestivum nsLtp (TaLtp) genes encoding types 1 and 2 nsLTPs. A phylogenetic tree clustered the wheat nsLTPs into ten subfamilies comprising 1-7 members.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!