A xylanase gene xyn10A was isolated from the human gut bacterium Bacteroides xylanisolvens XB1A and the gene product was characterized. Xyn10A is a 40-kDa xylanase composed of a glycoside hydrolase family 10 catalytic domain with a signal peptide. A recombinant His-tagged Xyn10A was produced in Escherichia coli and purified. It was active on oat spelt and birchwood xylans and on wheat arabinoxylans. It cleaved xylotetraose, xylopentaose, and xylohexaose but not xylobiose, clearly indicating that Xyn10A is a xylanase. Surprisingly, it showed a low activity against carboxymethylcellulose but no activity at all against aryl-cellobioside and cellooligosaccharides. The enzyme exhibited K (m) and V (max) of 1.6 mg ml(-1) and 118 micromol min(-1) mg(-1) on oat spelt xylan, and its optimal temperature and pH for activity were 37 degrees C and pH 6.0, respectively. Its catalytic properties (k (cat)/K (m) = 3,300 ml mg(-1) min(-1)) suggested that Xyn10A is one of the most active GH10 xylanase described to date. Phylogenetic analyses showed that Xyn10A was closely related to other GH10 xylanases from human Bacteroides. The xyn10A gene was expressed in B. xylanisolvens XB1A cultured with glucose, xylose or xylans, and the protein was associated with the cells. Xyn10A is the first family 10 xylanase characterized from B. xylanisolvens XB1A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-010-2694-0 | DOI Listing |
Carbohydr Polym
September 2023
School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, PR China; Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China. Electronic address:
Although many polysaccharides utilization loci (PULs) have been investigated by genomics and transcriptomics, the detailed functional characterization lags severely behind. We hypothesize that PULs on the genome of Bacteroides xylanisolvens XB1A (BX) dictate the degradation of complex xylan. To address, xylan S32 isolated from Dendrobium officinale was employed as a sample polysaccharide.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
April 2021
State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China.
Four unknown strains, characterized as Gram-stain-negative, strictly anaerobic, non-motile and rod-shaped, were isolated from fresh faeces of healthy humans in PR China. Pairwise sequence comparisons of the 16S rRNA genes showed that these isolates were separated into two clusters. Cluster I (strains HF-5141 and HF-106) was most closely related to XB1A (98.
View Article and Find Full Text PDFBMC Genomics
May 2016
Institut National de la recherche Agronomique (INRA), UR454 Microbiologie, Centre de Clermont-Ferrand-Theix, 63122, Saint-Genès-Champanelle, France.
Background: Plant cell wall (PCW) polysaccharides and especially xylans constitute an important part of human diet. Xylans are not degraded by human digestive enzymes in the upper digestive tract and therefore reach the colon where they are subjected to extensive degradation by some members of the symbiotic microbiota. Xylanolytic bacteria are the first degraders of these complex polysaccharides and they release breakdown products that can have beneficial effects on human health.
View Article and Find Full Text PDFBMC Genomics
February 2016
Institut National de la Recherche Agronomique (INRA), UR454 Microbiologie, Centre de Clermont-Ferrand/Theix, 63122, Saint-Genès Champanelle, France.
Background: Diet and particularly dietary fibres have an impact on the gut microbiome and play an important role in human health and disease. Pectin is a highly consumed dietary fibre found in fruits and vegetables and is also a widely used additive in the food industry. Yet there is no information on the effect of pectin on the human gut microbiome.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
August 2010
INRA, UR Unité de Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France.
A xylanase gene xyn10A was isolated from the human gut bacterium Bacteroides xylanisolvens XB1A and the gene product was characterized. Xyn10A is a 40-kDa xylanase composed of a glycoside hydrolase family 10 catalytic domain with a signal peptide. A recombinant His-tagged Xyn10A was produced in Escherichia coli and purified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!