As calculated by the density functional theory (DFT), the acidity of cytosine's exocyclic amine group (C-N(4)H2) in the base pair G-C is considerably increased upon its one-electron oxidation. The proton affinity (PA) of the amine moiety is lowered by ionisation of G-C (which yields G(*+)-C) from -348.1 to -269.1 kcal mol(-1). The PA is further decreased by 7.6 kcal mol(-1) as a result of the ensuing proton transfer from G(*+) to C to yield the spin-charge separated base pair G(-H)(*)-C(+H)(+). Under these conditions and taking the hydration energy of H(+) into account, the overall proton transfer from the C-N(4)H2 group to the aqueous phase in the major groove is exothermic by -2.4 kcal mol(-1). This proton transfer to water from the initially present DNA radical cation constitutes separation of charge from spin and thus reduces positive charge transfer in double stranded DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c002528c | DOI Listing |
J Phys Chem B
January 2025
Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.
In DNA double helices, Hoogsteen (HG) base pairing is an alternative mode of Watson-Crick (WC) base pairing. HG bp has a different hydrogen bonding pattern than WC bp. We investigate here the binding energy of homeodomain proteins with a HG-DNA duplex, where DNA adopts a HG bp in its sequence.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China.
Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates.
View Article and Find Full Text PDFFoods
January 2025
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
The widespread use of thiamethoxam has led to pesticide residues that have sparked global concerns regarding ecological and human health risks. A pressing requirement exists for a detection method that is both swift and sensitive. Herein, we introduced an innovative fluorescence biosensor constructed from alendronic acid (ADA)-modified upconversion nanoparticles (UCNPs) linked with magnetic nanoparticles (MNPs) via aptamer recognition for the detection of thiamethoxam.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.
A highly sensitive and selective electrochemical biosensor was developed for the detection of kanamycin using a core-hollow-shell structured peroxidase-mimic nanozyme, CHS-Fe₃O₄@@ZIF-8. The synthesized CHS-FeO@@ZIF-8 was characterized with scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that the CHS-FeO@@ZIF-8 exhibits excellent peroxidase-like activity due to its ultra-thin hollow layer.
View Article and Find Full Text PDFPLoS Biol
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
The organization of the human genome in space and time is critical for transcriptional regulation and cell fate determination. However, robust methods for tracking genome organization or genomic interactions over time in living cells are lacking. Here, we developed a multicolor DNA labeling system, ParSite, to simultaneously track triple genomic loci in the U2OS cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!