Background: In most countries of sub-Saharan Africa the control of lymphatic filariasis (LF) is based on annual mass drug administration (MDA) with a combination of ivermectin and albendazole, in order to interrupt transmission. Here we present the first detailed study on the effect of 3 repeated MDAs with this drug combination, as implemented by the Tanzanian National Lymphatic Filariasis Elimination Programme (NLFEP).
Methodology/principal Findings: Infection and transmission was monitored during a five-year period (one pre-intervention and four post-intervention years) in a highly endemic community (Kirare village) in north-eastern Tanzania. The vectors were Anopheles gambiae, An. funestus and Cx. quinquefasciatus. After start of intervention, human microfilaraemia initially decreased rapidly and statistically significant (prevalence by 21.2% and 40.4%, and mean intensity by 48.4% and 73.7%, compared to pre-treatment values after the first and second MDA, respectively), but thereafter the effect levelled off. The initial decrease in microfilaraemia led to significant decreases in vector infection and vector infectivity rates and thus to a considerable reduction in transmission (by 74.3% and 91.3% compared to pre-treatment level after first and second MDA, respectively). However, the decrease in infection and infectivity rates subsequently also levelled off, and low-level transmission was still noted after the third MDA. The MDAs had limited effect on circulating filarial antigens and antibody response to Bm14.
Conclusion/significance: Critical issues that may potentially explain the observed waning effect of the MDAs in the later study period include the long intervals between MDAs and a lower than optimal treatment coverage. The findings highlight the importance of ongoing surveillance for monitoring the progress of LF control programmes, and it calls for more research into the long-term effect of repeated ivermectin/albendazole MDAs (including the significance of treatment intervals and compliance), in order to optimize efforts to control LF in sub-Saharan Africa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879369 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0000696 | DOI Listing |
Int J Biol Macromol
January 2025
Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia. Electronic address:
Lymphatic filariasis is caused by infections of thread-like filarial worms, namely Wuchereria bancrofti, Brugia Malayi and Brugia timori. However, in-depth analysis of the antibody repertoire against Lymphatic filariasis is lacking. Using high-throughput sequencing of antibody repertoires, immunome analysis of IgG (LG) and IgM (LM) repertoires were studied.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.
Background: Lymphatic filariasis (LF), a mosquito-borne parasitic disease caused by three species of filarial worms, was first detected in Niue, a small Pacific Island nation of approximately 1,600 people, in 1954. After extensive efforts involving multiple rounds of Mass Drug Administration, Niue was validated by the World Health Organization (WHO) as having e4liminated LF as a public health problem in 2016. However, no surveillance has been conducted since validation to confirm infection rates have remained below WHO's elimination threshold.
View Article and Find Full Text PDFRadiol Case Rep
March 2025
Department of Diagnostic and Interventional Radiology, Kwong Wah Hospital, Hong Kong SAR, China.
Lymphatic filariasis is an uncommon condition in Hong Kong and is currently considered as one of the neglected tropical diseases by the World Health Organization. Blood tests are available for diagnosis of acute infections, but false negative results can occur with chronic manifestations of lymphatic filariasis. We present a case which illustrates how radiological imaging can help with diagnosis of lymphatic filariasis.
View Article and Find Full Text PDFActa Trop
January 2025
Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram 75000, Thailand. Electronic address:
Mansonia dives is recognized as a vector for brugian filariasis in Thailand. A recent study analyzing the cytochrome c oxidase subunit I (COI) gene revealed two distinct clades within the Ma. dives population in Thailand.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
International Lymphoedema Framework, London, United Kingdom.
Background: The World Health Organization launched the Global Programme to Eliminate Lymphatic Filariasis in 2000, which aimed at eradicating the disease by 2030. This goal depends on community mass drug administration and essential care. Despite these efforts, many rural communities still face untreated lymphatic filariasis and lack access to treatment and self-management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!