To get beyond the "low-hanging fruits" so far identified by genome-wide association (GWA) studies, new methods must be developed in order to discover the numerous remaining genes that estimates of heritability indicate should be contributing to complex human phenotypes, such as obesity. Here we describe a novel integrative method for complex disease gene identification utilizing both genome-wide transcript profiling of adipose tissue samples and consequent analysis of genome-wide association data generated in large SNP scans. We infer causality of genes with obesity by employing a unique set of monozygotic twin pairs discordant for BMI (n = 13 pairs, age 24-28 years, 15.4 kg mean weight difference) and contrast the transcript profiles with those from a larger sample of non-related adult individuals (N = 77). Using this approach, we were able to identify 27 genes with possibly causal roles in determining the degree of human adiposity. Testing for association of SNP variants in these 27 genes in the population samples of the large ENGAGE consortium (N = 21,000) revealed a significant deviation of P-values from the expected (P = 4x10(-4)). A total of 13 genes contained SNPs nominally associated with BMI. The top finding was blood coagulation factor F13A1 identified as a novel obesity gene also replicated in a second GWA set of approximately 2,000 individuals. This study presents a new approach to utilizing gene expression studies for informing choice of candidate genes for complex human phenotypes, such as obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880558PMC
http://dx.doi.org/10.1371/journal.pgen.1000976DOI Listing

Publication Analysis

Top Keywords

gwa studies
8
genome-wide association
8
complex human
8
human phenotypes
8
phenotypes obesity
8
genes
7
obesity
5
genome-wide
4
genome-wide expression
4
expression data
4

Similar Publications

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

Limited whole genome sequencing (WGS) studies in Asian populations result in a lack of representative reference panels, thus hindering the discovery of ancestry-specific variants. Here, we present the South and East Asian reference Database (SEAD) panel ( https://imputationserver.westlake.

View Article and Find Full Text PDF

The genetic and observational nexus between diabetes and arthritis: a national health survey and mendelian randomization analysis.

Nutr Diabetes

December 2024

Department of International Medical, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.

Background: Diabetes mellitus (DM) and arthritis are prevalent conditions worldwide. The intricate relationship between these two conditions, especially in the context of various subtypes of arthritis, remains a topic of interest.

Objective: To investigate the relationship between diabetes and arthritis, with a focus on Rheumatoid Arthritis (RA), using data from the National Health and Nutrition Examination Survey (NHANES) and Mendelian Randomization (MR) analysis.

View Article and Find Full Text PDF

Honeybees, Apis mellifera, have experienced the full impacts of globalisation, including the recent invasion by the parasitic mite Varroa destructor, now one of the main causes of colony losses worldwide. The strong selection pressure it exerts has led some colonies to develop defence strategies conferring some degree of resistance to the parasite. Assuming these traits are partly heritable, selective breeding of naturally resistant bees could be a sustainable strategy for fighting infestations.

View Article and Find Full Text PDF

Background: Acne is a common skin disorder that may be linked to metabolic dysfunction. However, the causal impact of blood metabolites on acne has not been thoroughly investigated.

Methods: We performed a metabolome-wide Mendelian randomization (MR) analysis on 486 blood metabolites and acne using a genome-wide association dataset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!