Statistical evolutionary models provide an important mechanism for describing and understanding the escape response of a viral population under a particular therapy. We present a new hierarchical model that incorporates spatially varying mutation and recombination rates at the nucleotide level. It also maintains separate parameters for treatment and control groups, which allows us to estimate treatment effects explicitly. We use the model to investigate the sequence evolution of HIV populations exposed to a recently developed antisense gene therapy, as well as a more conventional drug therapy. The detection of biologically relevant and plausible signals in both therapy studies demonstrates the effectiveness of the method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881484 | PMC |
Phys Rev Lett
December 2024
Technion, Department of Electrical and Computer Engineering, Haifa 32000, Israel.
We present the concept of time-domain bound states in continuum. We show that a rapid judiciously designed temporal modulation of the refractive index in a spatially homogenous medium gives rise to a bound state in time, embedded in a continuum of wave numbers. Mathematically, these bound states in the continuum are closed form solutions of the Maxwell equations in time and one-dimensional space.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
U.S. Environmental Protection Agency/Office of Research and Development, Durham, North Carolina 27711, United States.
Humans experience widespread exposure to anthropogenic per- and polyfluoroalkyl substances (PFAS) through various media, which can lead to a wide range of negative health impacts. Tap water is an important source of exposure in communities with any degree of contamination but routine or large-scale PFAS monitoring often depends on targeted analytical methods limited to measuring specific PFAS. We analyzed 680 tap water samples from the American Healthy Homes Survey II for PFAS using non-targeted analysis (NTA) to expand the range of detectable PFAS.
View Article and Find Full Text PDFGeosci Model Dev
November 2024
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
United States (US) background ozone (O) is the counterfactual O that would exist with zero US anthropogenic emissions. Estimates of US background O typically come from chemical transport models (CTMs), but different models vary in their estimates of both background and total O. Here, a measurement-model data fusion approach is used to estimate CTM biases in US anthropogenic O and multiple US background O sources, including natural emissions, long-range international emissions, short-range international emissions from Canada and Mexico, and stratospheric O.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Purpose: This study aimed to provide quantitative information for implementing Lattice radiotherapy (LRT) using a medical linear accelerator equipped with the Millennium 120 multi-leaf collimator (MLC). The research systematically evaluated the impact of varying vertex diameters and separations on dose distribution, peak-to-valley dose ratio (PVDR), and normal tissue dose.
Methods: A cylindrical Virtual Water™ phantom was used to create LRT treatments using the Eclipse version 16.
Nowadays, spaceborne LiDAR technology, particularly ICESat-2, has become a transformative tool in marine environmental research. Unlike traditional passive optical remote sensing methods, ICESat-2 offers detailed vertical structure mapping of oceanic optical properties. Despite the potential of ICESat-2 for observing the optical vertical structure, its application in the East China Sea with complex hydrological conditions and dynamic ecosystems remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!