Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) programme, activity concentrations of (60)Co, (90)Sr, (137)Cs and (3)H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals using eleven modelling approaches. Comparison of predicted radionuclide concentrations in the different species types with measured values highlighted a number of areas where additional work and understanding is required to improve the predictions of radionuclide transfer. For some species, the differences could be explained by ecological factors such as trophic level or the influence of stable analogues. Model predictions were relatively poor for mammalian species and herpetofauna compared with measured values, partly due to a lack of relevant data. In addition, concentration ratios are sometimes under-predicted when derived from experiments performed under controlled laboratory conditions representative of conditions in other water bodies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0952-4746/30/2/S06 | DOI Listing |
J Environ Radioact
January 2025
Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA.
The primary aim of this study was to quantify patterns in the distribution of Sr and Cs activity in pine (Pinus sylvestris L.: 18 sites) and birch (Betula pendula Roth.: 2 sites) forests within the Chornobyl exclusion zone, 30 years after the Chornobyl nuclear power plant (NPP) accident (1986).
View Article and Find Full Text PDFJ Environ Radioact
January 2025
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/STAAR/LRTA, PSE-ENV/SPDR/LT2S, Saint-Paul-lez-Durance, F-13115, France. Electronic address:
The transfer of radionuclides discharged into rivers by nuclear facilities are conditioned by their solid/liquid fractionation, commonly represented by an equilibrium approach using the distribution coefficient K. This coefficient, largely used in modeling, assumes an instantaneous and completely reversible reaction. However, such assumptions are rarely verified.
View Article and Find Full Text PDFSci Total Environ
January 2025
Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O.Box 5003, NO-1432 Ås, Norway.
Numerical transport models are important tools for nuclear emergency decision makers in that they rapidly provide early predictions of dispersion of released radionuclides, which is key information to determine adequate emergency protective measures. They can also help us understand and describe environmental processes and can give a comprehensive assessment of transport and transfer of radionuclides in the environment. Transport of radionuclides in air and ocean is affected by a number of different physico-chemical processes.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
Carbon-14 (C-14) has been a major contributor to the human radioactive exposure dose, as it is released into the environment from the nuclear industry in larger quantities compared to other radionuclides. This most abundant nuclide enters the biosphere as organically bound C-14 (OBC-14), posing a potential threat to public health. Yet, it remains unknown how this relatively low radiotoxic nuclide induces health risks via chemical effects, such as isotope effect.
View Article and Find Full Text PDFRadiopharmaceutical therapy (RPT) enhances tumor response to immune checkpoint inhibitors (ICI) in preclinical models, but the effects of different radioisotopes have not been thoroughly compared. To evaluate mechanisms of response to RPT+ICI, we used NM600, an alkylphosphocholine selectively taken up by most tumors. Effects of Y-, Lu-, and Ac-NM600 + ICIs were compared in syngeneic murine models, B78 melanoma (poorly immunogenic) and MC38 colorectal cancer (immunogenic).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!