The major route of iron uptake by cells occurs through transferrin receptor (TfR)-mediated endocytosis of diferric-charged plasma transferrin (holo-Tf). In this work, we pursued TfR antibodies as potential cancer therapeutics, characterizing human single-chain variable antibody fragments (scFv) specific for the human TfR isolated from a phage display library. We hypothesized that many of these antibodies would function as ligand mimetics because scFvs from the library were selected for binding and internalization into living cells. In support of this hypothesis, the anti-TfR scFvs identified were antagonists of TfR binding to holo-Tf, particularly two of the most potent antibodies, 3TF12 and 3GH7, which blocked the in vitro proliferation of a number of hematopoietic cancer cell lines. We optimized this activity of 3TF12 and 3GH7 by engineering 55-kDa bivalent antibody formats, namely, F12CH and H7CH, which could block cell proliferation with an IC(50) of 0.1 microg/mL. We found that the mechanism of the scFv antibody cytotoxicity was unique compared with cytotoxic anti-TfR monoclonal antibodies that have been described, causing cell surface upregulation of TfR along with the inhibition of holo-Tf cell uptake and induction of cell death. In a nude mouse model of erythroleukemia, administration of F12CH reduced tumor growth. Together, our findings define a new class of fully human anti-TfR antibodies suitable for immunotherapy against tumors whose proliferation relies on high levels of TfR and iron uptake, such as acute lymphoid and myeloid leukemias.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-10-0938DOI Listing

Publication Analysis

Top Keywords

human single-chain
8
transferrin receptor
8
iron uptake
8
3tf12 3gh7
8
antibodies
6
tfr
5
cell
5
development human
4
single-chain antibodies
4
antibodies transferrin
4

Similar Publications

Background: The adoptive cell transfer (ACT) of T cell receptor (TCR)-engineered T cells targeting the HLA-A2-restricted epitope NY-ESO-1 (A2/NY) has yielded important clinical responses against several cancers. A variety of approaches are being taken to augment tumor control by ACT including TCR affinity-optimization and T-cell coengineering strategies to address the suppressive tumor microenvironment (TME). Most TCRs of clinical interest are evaluated in immunocompromised mice to enable human T-cell engraftment and do not recapitulate the dynamic interplay that occurs with endogenous immunity in a treated patient.

View Article and Find Full Text PDF

Background: Granzyme B (GrB) is a key effector molecule, delivered by cytotoxic T lymphocytes and natural killer cells during immune surveillance to induce cell death. Fusion proteins and immunoconjugates represent an innovative therapeutic approach to specifically deliver a deadly payload to target cells. Epithelial membrane protein-2 (EMP2) is highly expressed in invasive breast cancer (BC), including triple-negative BC (TNBC), and represents an attractive therapeutic target.

View Article and Find Full Text PDF

The hERG1 potassium channel conducts the cardiac repolarizing current, IKr. hERG1 has emerged as a therapeutic target for cardiac diseases marked by prolonged actional potential duration (APD). Unfortunately, many hERG1 activators display off-target and proarrhythmic effects that limit their therapeutic potential.

View Article and Find Full Text PDF

Efficient Cytosolic Delivery of Single-Chain Polymeric Artificial Enzymes for Intracellular Catalysis and Chemo-Dynamic Therapy.

J Am Chem Soc

January 2025

The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China.

Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo.

View Article and Find Full Text PDF

Virus-mediated delivery of single-chain antibody targeting TDP-43 protects against neuropathology, cognitive impairment and motor deficit caused by chronic cerebral hypoperfusion.

Exp Neurol

January 2025

CERVO Brain Research Centre, Québec, Québec G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec City G1V 0A6, Canada. Electronic address:

Chronic cerebral hypoperfusion induced by permanent unilateral common carotid artery occlusion in mice was recently found to induce an age-dependent formation of insoluble cytoplasmic TDP-43 aggregates reminiscent of pathological changes found in human vascular dementia. In this model, the gradual deregulation of TDP-43 homeostasis in cortical neurons was associated with marked cognitive and motor deficits. To target the TDP-43-mediated toxicity in this model, we generated an adeno-associated virus vector encoding a single-chain antibody against TDP-43, called scFv-E6, designed for pan-neuronal transduction following intravenous administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!