Betacellulin (BTC) belongs to the family of epidermal growth factor (EGF)-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release soluble mature ligands. BTC is a dual-specificity ligand for ErbB1 and ErbB4 receptors, and can activate unique signal-transduction pathways that are beneficial for the function, survival and regeneration of pancreatic beta-cells. We have previously shown that BTC precursor (proBTC) is cleaved by ADAM10 to generate soluble ligand and a stable, transmembrane remnant (BTC-CTF). In this study, we analyzed the fate of the BTC-CTF in greater detail. We demonstrated that proBTC is cleaved by ADAM10 to produce BTC-CTF, which then undergoes intramembrane processing by presenilin-1- and/or presenilin-2-dependent gamma-secretase to generate an intracellular-domain fragment (BTC-ICD). We found that the proBTC cytoplasmic domain is palmitoylated and that palmitoylation is not required for ADAM10-dependent cleavage but is necessary for the stability and gamma-secretase-dependent processing of BTC-CTF to generate BTC-ICD. Additionally, palmitoylation is required for nuclear-membrane localization of BTC-ICD, as demonstrated by the redistribution of non-palmitoylated BTC-ICD mutant to the nucleoplasm. Importantly, a novel receptor-independent role for BTC-ICD signaling is suggested by the ability of BTC-ICD to inhibit cell growth in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886747PMC
http://dx.doi.org/10.1242/jcs.060830DOI Listing

Publication Analysis

Top Keywords

gamma-secretase-dependent processing
8
intracellular-domain fragment
8
cell growth
8
probtc cleaved
8
cleaved adam10
8
palmitoylation required
8
btc-icd
6
sequential gamma-secretase-dependent
4
processing betacellulin
4
betacellulin precursor
4

Similar Publications

Classical cadherins, including vascular endothelial (VE)-cadherin, are targeted by matrix metalloproteinases (MMPs) and γ-secretase during adherens junction (AJ) disassembly, a mechanism that might have relevance for endothelial cell (EC) integrity and vascular homeostasis. Here, we show that oxidative stress triggered by HO exposure induced efficient VE-cadherin proteolysis by MMPs and γ-secretase in human umbilical endothelial cells (HUVECs). The cytoplasmic domain of VE-cadherin produced by γ-secretase, VE-Cad/CTF2-a fragment that has eluded identification so far-could readily be detected after HO treatment.

View Article and Find Full Text PDF

ADAM10- and γ-secretase-dependent cleavage of the transmembrane protein PTPRT attenuates neurodegeneration in the mouse model of Alzheimer's disease.

FASEB J

February 2023

Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.

PTPRT (receptor-type tyrosine-protein phosphatase T), a brain-specific type 1 transmembrane protein, plays an important role in neurodevelopment and synapse formation. However, whether abnormal PTPRT signaling is associated with Alzheimer's disease (AD) remains elusive. Here, we report that Ptprt mRNA expression is found to be downregulated in the brains of both human and mouse models of AD.

View Article and Find Full Text PDF

The aggregation of β-amyloid peptide 42 results in the formation of toxic oligomers and plaques, which plays a pivotal role in Alzheimer's disease pathogenesis. Aβ42 is one of several Aβ peptides, all of Aβ30 to Aβ43 that are produced as a result of γ-secretase-mediated regulated intramembrane proteolysis of the amyloid precursor protein. γ-Secretase modulators (GSMs) represent a promising class of Aβ42-lowering anti-amyloidogenic compounds for the treatment of AD.

View Article and Find Full Text PDF

Familial Alzheimer's Disease (FAD) caused by Presenilin-1 (PS1) mutations is characterized by early onset, cognitive impairment, and dementia. Impaired gamma secretase function favors production of longer beta-amyloid species in PS1 FAD. The PS1 E280A mutation is the largest FAD kindred under study.

View Article and Find Full Text PDF

Novel presenilin 1 and 2 double knock-out cell line for in vitro validation of PSEN1 and PSEN2 mutations.

Neurobiol Dis

May 2020

Ronald M. Loeb Center for Alzheimer's disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address:

Mutations in APP (amyloid precursor protein), PSEN1 (presenilin 1) or PSEN2 (presenilin 2) are the main cause of early-onset familial forms of Alzheimer's disease (autosomal dominant AD or ADAD). These genes affect γ-secretase-dependent generation of Amyloid β (Aβ) peptides, the main constituent of amyloid plaques and one of the pathological hallmarks of AD. Evaluation of patients with ADAD includes assessment of family history, clinical presentation, biomarkers, neuropathology when available and DNA sequencing data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!