AI Article Synopsis

  • The study presents a new method to identify transcriptional modules (TMs) by integrating gene expression and transcription factor binding data using a hierarchical Dirichlet process mixture model.
  • By analyzing data on a gene-by-gene basis, the model effectively separates co-expressed genes from co-regulated ones, enabling more accurate identification of gene clusters that share similar transcriptional structures.
  • The results indicate that this approach yields clusters with greater functional coherence compared to existing methods, simplifying the identification of significant groups of genes.

Article Abstract

Motivation: We present a method for directly inferring transcriptional modules (TMs) by integrating gene expression and transcription factor binding (ChIP-chip) data. Our model extends a hierarchical Dirichlet process mixture model to allow data fusion on a gene-by-gene basis. This encodes the intuition that co-expression and co-regulation are not necessarily equivalent and hence we do not expect all genes to group similarly in both datasets. In particular, it allows us to identify the subset of genes that share the same structure of transcriptional modules in both datasets.

Results: We find that by working on a gene-by-gene basis, our model is able to extract clusters with greater functional coherence than existing methods. By combining gene expression and transcription factor binding (ChIP-chip) data in this way, we are better able to determine the groups of genes that are most likely to represent underlying TMs.

Availability: If interested in the code for the work presented in this article, please contact the authors.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881394PMC
http://dx.doi.org/10.1093/bioinformatics/btq210DOI Listing

Publication Analysis

Top Keywords

transcriptional modules
12
gene expression
8
expression transcription
8
transcription factor
8
factor binding
8
binding chip-chip
8
chip-chip data
8
gene-by-gene basis
8
data
5
discovering transcriptional
4

Similar Publications

Genes involved in DMSO-mediated yield increase of entomopathogenic nematodes.

Sci Rep

December 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.

Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.

View Article and Find Full Text PDF

Safflower ( L.) is a valuable oil crop due to its bioactive ingredients and high linoleic acid content, which contribute to its antioxidant properties and potential for preventing atherosclerosis. Current research on safflower focuses on understanding the biosynthesis of seed oil through omics strategies, yet there is a lack of comprehensive knowledge of the dynamic changes in lipids and the regulatory mechanisms during seed development.

View Article and Find Full Text PDF

Introduction: The transcriptomic characteristics of + non-small cell lung cancer (NSCLC) represent a crucial aspect of its tumor biology. These features provide valuable insights into key dysregulated pathways, potentially leading to the discovery of novel targetable alterations or biomarkers.

Methods: From The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, all available + (n = 10), + (n = 5) and + (n = 5) NSCLC tumor and + cell line (n = 7) RNA-sequencing files were collected.

View Article and Find Full Text PDF

Transcriptome analysis reveals the genetic basis underlying the formation and seasonal changes of nuptial pads in Rana chensinensis.

BMC Genomics

December 2024

Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China.

Background: Nuptial pads, a typical sexually dimorphic trait in anurans, are located on the first digit of the male forelimb in Rana chensinensis and exhibit morphological changes synchronized with breeding cycles. However, the genetic mechanisms underlying its formation and seasonal changes remain poorly understood.

Results: To identify genes and biological processes associated with the development and seasonal variations of nuptial pads, we conducted a comprehensive transcriptome analysis on nuptial pads and hind toe skin across both sexes at different breeding periods in R.

View Article and Find Full Text PDF

Background: Sepsis is a life-threatening organ dysfunction condition produced by dysregulation of the host response to infection. It is now characterized by a high clinical morbidity and mortality rate, endangering patients' lives and health. The purpose of this study was to determine the value of Long chain non-coding RNA (LncRNA) RP3_508I15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!