3-Deoxyanthocyanidins are the unique phytoalexins synthesized by sorghum in response to fungal inoculation. They are structurally related to anthocyanins but the final steps of their pathogen-inducible biosynthesis are not fully understood. We have identified new flavonoid structural genes from the recently completed sorghum BTx623 genome sequence. The biochemical functions of the different expressed sorghum genes were established in planta by complementation in the appropriate Arabidopsis transparent testa mutants. There is a family of nine chalcone synthase genes which are all inducible by fungal inoculation in sorghum seedlings. Specific dihydroflavonol 4-reductase (DFR) genes responsive to conditions which stimulated anthocyanin accumulation (SbDFR1) or 3-deoxyanthocyanidin production (SbDFR3) were identified. Recombinant SbDFR1 and SbDFR3 were found to function as typical DFRs by accepting dihydroflavonol substrates. On the other hand, both DFRs showed substantially lower but detectable NADPH-dependent activities toward flavanones. Reduction of flavanones to flavan-4-ols is a reaction step required for 3-deoxyanthocyanidin production. Flavanone 3-hydroxylase (F3H) converts flavanones to dihydroflavonols for anthocyanin biosynthesis. In sorghum seedlings, expression of two F3H genes was either absent or strongly suppressed during the accumulation of 3-deoxyanthocyanidins. Under such conditions, most flavanones are expected to be reduced by the pathogen-induced SbDFR3 for the formation of flavan-4-ols. Our work also revealed that 3-deoxyanthocyanidin accumulation and SbDFR3 expression were induced by methyl jasmonate treatment in sorghum roots but the stimulation effects were antagonized by salicylic acid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcq080 | DOI Listing |
Physiol Plant
January 2025
Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.
Genetic transformation is a powerful tool in plant biotechnology. However, its application is limited to species that are well-studied and easy to transform. There is a critical need to establish transformation protocols for non-model species.
View Article and Find Full Text PDFPeerJ
January 2025
Plant Health Department, GAP Agricultural Research Institute, Şanlıurfa, Turkey.
This study evaluated the effectiveness of arbuscular mycorrhizal fungi (AMF) species, including (FM), (RI), (CE), and a Mycorrhizal mix (MM) comprising these three species, on pepper plants ( L.) inoculated with two isolates of (48- and 18-) and two isolates of mix (50-F. mixture and 147-F.
View Article and Find Full Text PDFVet World
November 2024
Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia.
One of the worst zoonotic illnesses, avian influenza (AI), or commonly referred to as bird flu, is caused by viruses belonging to the genus Influenza viruses, which are members of the Orthomyxoviridae family. The harmful effects of AI illness can affect both human and animal health and cause financial losses. Globally, the AI virus lacks political purpose and is not limited by geographical limits.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark.
Afforestation is increasingly recognized as a critical strategy to restore ecosystems and enhance biodiversity on post-agricultural landscapes. However, agricultural legacies, such as altered soil structure, nutrient imbalances, and depleted microbial diversity, can slow down forest establishment or cause ecosystems to deviate from expected successional trajectories. In this opinion paper, we explore the potential of soil inoculations as a tool to overcome these challenges by introducing beneficial microbial communities that can accelerate ecosystem recovery and forest development.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
The Simulator of Human Intestinal Microbial Ecosystem (SHIME) has hindered widespread adoption due to its high cost. This study founded biomimetic multilink fermentation equipment (BMLFE), priced at half or even lower than SHIME. It was improved based on multilink fermentation equipment (MLFE) by modifying materials, peristaltic pumps, fermentation time, and dietary habits while calculating transfer time and volumes and conducted anaerobic fermentation for 15 days followed by monitoring changes in intestinal microbial composition and short-chain fatty acids (SCFAs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!