High-precision motion estimation has become essential in ultrasound-based techniques such as time-domain Doppler and elastography. Normalized cross-correlation (NCC) has been shown as one of the best motion estimators. However, a significant drawback is its associated computational cost, especially when RF signals are used. In this paper, a method based on sum tables developed elsewhere is adapted for fast NCC calculation in ultrasound-based motion estimation, and is tested with respect to the speed enhancement of the specific application of ultrasound-based motion estimation. Both the numerator and denominator in the NCC definition are obtained through pre-calculated sum tables to eliminate redundancy of repeated NCC calculations. Unlike a previously reported method, a search region following the principle of motion estimation is applied in the construction of sum tables. Because an exhaustive search and high window overlap are typically used for highest quality imaging, the computational cost of the proposed method is significantly lower than that of the direct method using the NCC definition, without increasing bias and variance characteristics of the motion estimation or sacrificing the spatial resolution. Therefore, high quality, high spatial resolution, and high calculation speed can be all simultaneously obtained using the proposed methodology. The high efficiency of this method was verified using RF signals from a human abdominal aorta in vivo. For the parameters typically used, a real-time, very high frame rate of 310 frames/s was achieved for the motion estimation. The proposed method was also extended to 2-D NCC motion estimation and motion estimation with other algorithms. The technique could thus prove very useful and flexible for real-time motion estimation as well as in other fields such as optical flow and image registration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123965 | PMC |
http://dx.doi.org/10.1109/TUFFC.2010.1554 | DOI Listing |
J Biomech
January 2025
Department of Kinesiology, McMaster University, Hamilton, ON, Canada. Electronic address:
Recording and quantifying hand and finger movement is essential for understanding the neuromechanical control of the hand. Typically, kinematics are collected through marker-based optoelectronic motion capture systems. However, marker-based systems are time-consuming to setup, expensive, and cumbersome, especially for finger tracking.
View Article and Find Full Text PDFComput Biol Med
January 2025
Department of Bioengineering, Imperial College London, London SW7 2AZ, UK. Electronic address:
Temporal echocardiography image registration is important for cardiac motion estimation, myocardial strain assessments, and stroke volume quantifications. Deep learning image registration (DLIR) is a promising way to achieve consistent and accurate registration results with low computational time. DLIR seeks the image deformation that enables the moving image to be warped to match the fixed image.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Université de Lyon, CREATIS ; CNRS UMR5220 ; Inserm U1206 ; INSA-Lyon ; Université Lyon 1, CREATIS, Centre Léon Bérard, Lyon, 69373, FRANCE.
Rigid patient motion can cause artifacts in single photon emission computed tomography (SPECT) images, compromising the diagnosis and treatment planning. Exponential data consistency conditions (eDCCs) are mathematical equations describing the redundancy of exponential SPECT measurements. It has been recently shown that eDCCs can be used to detect patient motion in SPECT projections.
View Article and Find Full Text PDFAbdom Radiol (NY)
January 2025
AGH University of Krakow, Krakow, Poland.
Purpose: Shear wave elastography (SWE) provides a means for adding information about the mechanical properties of tissues to a diagnostic ultrasound examination. It is important to understand the physics and methods by which the measurements are made to aid interpretation of the results as they relate to disease processes.
Methods: The components of how ultrasound is used to generate shear waves and make measurements of the induced motion are reviewed.
Sports Biomech
January 2025
Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
It is well-known among swimmers and coaches that the swimming speed of the underwater dolphin kick (UDK) is higher than that of the underwater flutter kick (UFK). This study aimed to clarify the differences in swimming performance between the two kicking styles in terms of kinematics, kinetics and muscle activity. Eight male swimmers performed UDK and UFK in a water flume at same effort levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!