The photolytic degradation of the diazo dye, Amido Black, using UV/H(2)O(2) has been carried out experimentally and parameters for most efficient dye degradation have been determined. The degradation of the dye was followed by UV-Vis spectroscopy, HPLC, and LC-MS and is proposed to be initiated by ()OH radicals formed by the photolysis of H(2)O(2). A detailed study was also carried out using LC-MS and LC-MS/MS to determine the degradation pathway of the dye as well as to identify some of the intermediate products formed. Our results suggest that Amido Black degradation occurs preferentially by ()OH radical attack at the more electron rich diazo functionality of the molecule. Furthermore, evidence is presented that subsequent steps in this diazo dye degradation pathway include radical denitration, radical desulfonation and radical diazotization. This report is one of the very few studies that have proposed possible mechanistic pathways for the degradation pathways of a diazo compound.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2010.04.065DOI Listing

Publication Analysis

Top Keywords

diazo compound
8
diazo dye
8
amido black
8
dye degradation
8
degradation pathway
8
degradation
7
diazo
5
dye
5
liquid chromatography
4
chromatography tandem
4

Similar Publications

Synthesis of Carboxylic Acids Containing α-All-Carbon Quaternary Centers from Diazo Compounds and Trialkylboranes.

J Org Chem

December 2024

Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.

The construction of C-C bonds to form all-carbon quaternary centers remains a significant challenge in synthetic chemistry. Herein, we report a tandem process involving a 1,2-migration of a tetra-coordinated boron intermediate followed by a Claisen rearrangement of the boron enolate, achieved through a reaction between allyl diazoacetates and trialkylboranes. The transformation forms two C-C bonds at the carbenic position of diazo substrate in a single-step operation under neutral conditions.

View Article and Find Full Text PDF

A Formal 1,2-Stevens Rearrangement of Thioester Ylides as a Single-Atom Molecular Editing Tool.

Org Lett

December 2024

University of Belgrade, Faculty of Chemistry, Studentski trg 16, P.O. Box 51, 11158 Belgrade 118, Serbia.

A rhodium-catalyzed reaction of thioesters with diazo reagents was recognized as a powerful and unprecedented tool for single-atom molecular editing by the insertion of a single carbon atom into the C(O)─S thioester bond, thereby leading to various α-thioketones possessing a quaternary carbon atom. A selective and precise defunctionalization of the polyfunctionalized products further demonstrated the synthetic utility of the reaction for the synthesis of more common structural classes of compounds.

View Article and Find Full Text PDF

In this study, the readily available and inexpensive Sc(OTf) was utilized to activate ortho-benzoyl diazo compounds to in situ generate highly reactive cyclic 1,3-dipoles, which underwent a regioselective [4 + 3] cycloaddition with dioxopyrrolidines, yielding the [4.2.1]-oxabridged scaffolds bearing multiple contiguous quaternary carbon centers with high diastereoselectivities.

View Article and Find Full Text PDF

Diazo compounds are known to be good coupling partners in the synthesis of heterocycles, carbocycles and functionalized molecules a rhodium carbene-based strategy. Many heterocyclic and carbocyclic compounds, including isoquinolones and isocoumarins, quinoxalines, indoles, pyrrones, benzothazines, enaminones, benzenes and seven-membered rings, can be constructed using this rhodium-catalyzed system. The reaction mechanism involves C-H activation, carbene insertion and an annulation/functionalization sequence.

View Article and Find Full Text PDF

Enantioselective Cycloaddition of Formed aza-Dienes and Vinyl Diazo Compounds for the Synthesis of Optically Enriched and Diazo Containing Tetrahydropyridazine.

J Org Chem

December 2024

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.

A copper catalyzed enantioselective formal aza-Diels-Alder reaction of formed 1,2-diaza-1,3-dienes from α-halohydrazones and vinyl diazo compounds was described. The protocol provides a variety of optically enriched diazo-containing tetrahydropyridazines in moderate yields and with up to excellent enantioselectivities. The present methodologies utilize chiral oxazolines as the chiral ligands for asymmetric catalysis and feature mild reaction conditions, readily available substrates, and broad substrate scope.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!