DnrO is a transcription factor that regulates biosynthesis of secondary metabolite daunorubicin (DNR) in Streptomyces peucetius. DNR is a DNA-intercalating drug widely used in cancer chemotherapy. Binding of DnrO close to its promoter fulfils dual functions, namely activation of dnrN and repression of dnrO. DnrN protein binds to a sequence close to the dnrI promoter to activate it, which is essential for turning on biosynthetic genes. In this study, we analyzed the inhibition of DNA-DnrO complex formation by DNR and its effect on dnrO and dnrN expression. The intracellular concentration of drug required to alter the expression of these two genes was determined in vitro. Based on the results, a model is proposed which describes the modulation of dnrN and dnrO expression by intracellular stoichiometric concentration of the drug DNR and protein DnrO. This regulatory mechanism would maintain optimal intracellular drug concentrations in S. peucetius. This would imply that the organism has an adaptive mechanism to escape the cytotoxicity of DNR in addition to its self-resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2010.01948.xDOI Listing

Publication Analysis

Top Keywords

expression intracellular
12
modulation dnrn
8
dnrn expression
8
streptomyces peucetius
8
dnro dnrn
8
concentration drug
8
dnro
7
dnr
5
expression
4
intracellular
4

Similar Publications

Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20.

Autoimmunity

December 2025

Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!