1. Orexins are neuropeptides synthesized in the hypothalamus that regulate many physiological functions, including energy homeostasis, stress responses, sleep/wake states etc. It is now emerging that orexins may also regulate breathing, but little is known as to how they do this, particularly in chronic obstructive pulmonary disease (COPD). In the present study, we used a rat model of cigarette smoke-induced COPD to investigate orexin-A expression in the hypothalamus and medulla and its effect on respiration. 2. Sprague-Dawley rats were exposed to cigarette smoke (1 h twice daily) for 12 weeks. Lung function and pathological changes associated with inflammation and emphysema were determined to confirm the validity of the COPD model. 3. Hypothalamic and medullary orexin-A levels, as determined by radioimmunoassay, were higher in smoke-exposed than control rats. Furthermore, the expression of prepro-orexin (PPO) mRNA in the hypothalamus and orexin OX(1) receptor mRNA in the medulla, as determined by real-time quantitative polymerase chain reaction, was higher in smoke-exposed than control rats. 4. The number of orexin-A-positive neurons in the hypothalamus and OX(1) and OX(2) receptor-positive neurons in the ventrolateral medulla was higher in smoke-exposed than control rats. 5. Microinjection of orexin-A (1 μmol/L, 0.1 μL) into the pre-Bötzinger complex enhanced phrenic nerve discharge to a greater extent in smoke-exposed compared with control rats (61% vs 36%, respectively). 6. The findings of the present study demonstrate that the increased respiratory activity in smoke-exposed rats is due to an increase in orexin-A as well as upregulation of orexin receptors in the ventrolateral medulla.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1440-1681.2010.05411.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!