Resistance to carbapenems in enterobacteria is mediated by the production of several types of carbapenemases or by the decreased permeability of the outer membrane, combined with the expression of extended-spectrum beta-lactamases (ESBLs) or AmpC-like cephalosporinases. The objective of this study was to characterize carbapenem-nonsusceptible (C-NS) isolates of Klebsiella pneumoniae in the University Hospital in Plzen (Czech Republic) and compare them with carbapenem-susceptible (C-S) K. pneumoniae isolates from the same patients. Six C-NS K pneumoniae isolates from different patients were collected between January 2007 and June 2008, and from three of these patients, C-S isolates were available for the study as well. The isolates were typed by pulsed-field gel electrophoresis and multilocus sequence typing. beta-Lactamases were analyzed by isoelectric focusing, bioassay, and PCR and sequencing of bla genes. Major porin channels, OmpK35 and OmpK36, were studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot; porin genes were amplified and sequenced, and their expression was assessed by reverse transcriptase-PCR. The C-NS isolates belonged to three pulsotypes and to the clone ST11, produced the SHV-5 ESBL and/or DHA-1 AmpC-type cephalosporinase, did not express OmpK36, and had a reduced expression of OmpK35. The C-S isolates differed from their C-NS counterparts only by porin expression profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2010.02016.xDOI Listing

Publication Analysis

Top Keywords

klebsiella pneumoniae
8
and/or dha-1
8
c-ns isolates
8
pneumoniae isolates
8
isolates patients
8
c-s isolates
8
gel electrophoresis
8
isolates
7
carbapenem-nonsusceptible strains
4
strains klebsiella
4

Similar Publications

Cholesterol-terminated cationic lipidated oligomers (CLOs) as a new class of antifungals.

J Mater Chem B

January 2025

Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.

Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.

View Article and Find Full Text PDF

Ceftriaxone-resistant Enterobacterales remain a public health threat; contemporary data investigating their molecular epidemiology are limited. Five hundred consecutive ceftriaxone-resistant (MIC ≥ 4 µg/mL) Enterobacterales bloodstream isolates were collected between 2018 and 2022 from three Maryland hospitals. Broth microdilution confirmed antibiotic susceptibilities.

View Article and Find Full Text PDF

Bacteremia is a serious clinical condition in which pathogenic bacteria enter the bloodstream, putting patients at risk of septic shock and necessitating antibiotic treatment. Choosing the most effective antibiotic is crucial not only for resolving the infection but also for minimizing side effects, such as dysbiosis in the healthy microbiome and reducing the selection pressure for antibiotic resistance. This requires prompt identification of the pathogen and antibiotic susceptibility testing, yet these processes are inherently slow in standard clinical microbiology labs due to reliance on growth-based assays.

View Article and Find Full Text PDF

Unlabelled: is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8).

View Article and Find Full Text PDF

Keystone engineers profoundly influence microbial communities by altering their shared environment, often by modifying key resources. Here, we show that in an antibiotic-treated microbial community, bacterial spread is controlled by keystone engineering affecting dispersal- an effect hidden in well-mixed environments. Focusing on two pathogens, non-motile Klebsiella pneumoniae and motile Pseudomonas aeruginosa, we found that both tolerate a β-lactam antibiotic, with Pseudomonas being more resilient and dominating in well-mixed cultures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!