Since the fusion pore of the secretory vesicle is resealed before complete dilation during 'kiss-and-run' exocytosis, their cargoes are not completely released. Although the transient fusion pore is kept open for several seconds, the precise mechanisms that control fusion pore maintenance, and their physiological significance, are not well understood. Using dual-colour TIRF (total internal reflection fluorescence) microscopy in neuroendocrine PC12 cells, we show that myosin II regulates the fusion pore dynamics during kiss-and-run exocytosis. The release kinetics of mRFP (monomeric red fluorescent protein)-tagged tPA (tissue plasminogen activator) and Venus-tagged BDNF (brain-derived neurotrophic factor), which show slower release kinetics than NPY (neuropeptide Y)-mRFP and insulin-mRFP, were prolonged by the overexpression of a wild-type form of the RLC (myosin II regulatory light chain). In contrast, overexpression of a dominant-negative form of RLC shortened the release kinetics. Using spH (synapto-pHluorin), a green fluorescent protein-based pH sensor inside the vesicles, we confirmed that the modulation of the release kinetics by myosin II is due to changes in the duration of fusion pore opening. In addition, we revealed that the amount of hormone released into the extracellular space upon stimulation was increased by overexpression of wild-type RLC. We propose that the duration of fusion pore opening is regulated by myosin II to control the amount of hormone released from a single vesicle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20091839 | DOI Listing |
Int J Mol Sci
January 2025
Research Institute for Systems Biology and Medicine (RISBM), Nauchnyi proezd 18, 117246 Moscow, Russia.
SARS-CoV-2 viral entry requires membrane fusion, which is facilitated by the fusion peptides within its spike protein. These predominantly hydrophobic peptides insert into target membranes; however, their precise mechanistic role in membrane fusion remains incompletely understood. Here, we investigate how FP1 (SFIEDLLFNKVTLADAGFIK), the N-terminal fusion peptide, modulates membrane stability and barrier function across various model membrane systems.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Mitochondrial homeostasis is crucial for maintaining cellular energy production and preventing oxidative stress, which is essential for overall cellular function and longevity. Mitochondrial damage and dysfunction often occur concomitantly in myocardial ischemia-reperfusion injury (MIRI). Notoginsenoside R1 (NGR1), a unique saponin from the traditional Chinese medicine Panax notoginseng, has been shown to alleviate MIRI in previous studies, though its precise mechanism remains unclear.
View Article and Find Full Text PDFGels
January 2025
Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea.
Articular cartilage faces challenges in self-repair due to the lack of blood vessels and limited chondrocyte concentration. Polydeoxyribonucleotide (PDRN) shows promise for promoting chondrocyte growth and cartilage regeneration, but its delivery has been limited to injections. Continuous PDRN delivery is crucial for effective cartilage regeneration.
View Article and Find Full Text PDFBiomater Adv
January 2025
Hangzhou Dianzi University, Automation College, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou, Zhejiang, China. Electronic address:
In three-dimensional (3D) bioprinting, the internal channel network is vital for nutrient and oxygen transport, crucial for cell survival and tissue construction. However, bioinks' poor mechanical properties hinder precise control over these networks. Advancements in 3D printing strategies, structure characterization, and deformation monitoring can improve hydrogel scaffolds with interconnected channels.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany.
We present two innovative approaches to investigate the dynamics of membrane fusion and the strength of protein-membrane interactions. The first approach employs pore-spanning membranes (PSMs), which allow for the observation of protein-assisted fusion processes. The second approach utilizes colloidal probe microscopy with membrane-coated probes with reconstituted proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!