Mechanisms for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics.

Expert Rev Cardiovasc Ther

Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0486, USA.

Published: June 2010

Thiazide and thiazide-like diuretics are among the most commonly used antihypertensives and have been available for over 50 years. However, the mechanism by which these drugs chronically lower blood pressure is poorly understood. Possible mechanisms include direct endothelial- or vascular smooth muscle-mediated vasodilation and indirect compensation to acute decreases in cardiac output. In addition, thiazides are associated with adverse metabolic effects, particularly hyperglycemia, and the mechanistic underpinnings of these effects are also poorly understood. Thiazide-induced hypokalemia, as well as other theories to explain these metabolic disturbances, including increased visceral adiposity, hyperuricemia, decreased glucose metabolism and pancreatic beta-cell hyperpolarization, may play a role. Understanding genetic variants with differential responses to thiazides could reveal new mechanistic candidates for future research to provide a more complete understanding of the blood pressure and metabolic response to thiazide diuretics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904515PMC
http://dx.doi.org/10.1586/erc.10.27DOI Listing

Publication Analysis

Top Keywords

blood pressure
12
metabolic effects
8
thiazide thiazide-like
8
thiazide-like diuretics
8
mechanisms blood
4
pressure lowering
4
metabolic
4
lowering metabolic
4
effects thiazide
4
diuretics thiazide
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.

Background: Alzheimer's Disease (AD) poses a substantial global health burden, necessitating innovative therapeutic strategies. This study investigates the neuroprotective potential of a chrysin-loaded Nanostructured Lipid Carrier (NLC) drug delivery system in AD management. Employing the high-pressure homogenization method, chrysin-loaded NLCs were meticulously formulated to optimize drug delivery efficiency.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

University of Southern California, Los Angeles, CA, USA.

Background: Blood pressure (BP) management is an accessible therapeutic target for dementia prevention. BP variability (BPV) is a newer aspect of BP control recently associated with cognitive decline, dementia and Alzheimer's disease (AD), independent of traditionally targeted mean BP levels. Most of this work has relied on largely non-Hispanic White study samples in observational cohorts.

View Article and Find Full Text PDF

Background: The effect of high consumption of psychoactive substances of codeine (CDE), tramadol (TMD), and Cannabis sativa (CNB) as concoction has been associated with altered brain cognitive and neurochemical functions. However, the understanding of the complex mechanism behind the intake of Cannabis sativa co-administration with tramadol and codeine on both cardiac and brain function, neurotransmitters, purinergic, and antioxidant enzymes activities in the brain and heart of rats remains unreported.

Method: The measure of cognition using morris water maze (MWM) and Y-maze tests, hemodynamic parameters namely systolic blood pressure (SBP) and heart rate (HR), acetylcholinesterase (AChE), butyl-cholinesterase (BCHE), adenosine deaminase (ADA), arginase, catalase (CAT), superoxide dismutase (SOD) enzymes' activities, reduced glutathione (GSH) and malondialdehyde (MDA), nitric oxide (NO) levels, in the brain and heart of CNB, TMD, and CDE exposed rats was done.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Seattle University, Seattle, WA, USA.

Background: Cerebral amyloid angiopathy (CAA) and hypertension are the two most common risk factors of intracranial hemorrhage leading to cognitive impairment, but less is known about how the two relate. A better understanding of the association between these risk factors is a key step towards developing new strategies to manage hypertension and attenuate CAA progression.

Method: This study analyzed data from 2,510 participants in the National Alzheimer's Coordinating Center (NACC) dataset who had CAA and longitudinal blood pressure (BP) measurements before death.

View Article and Find Full Text PDF

Objective: Elevated systolic blood pressure and increased pulse pressure are closely associated with renal damage; however, the exact mechanism remains unclear. Therefore, we investigated the effects of increased pulse pressure on tubulointerstitial fibrosis and renal damage in elderly rats with isolated systolic hypertension (ISH). Additionally, the role of renal tubular epithelial-mesenchymal transition (EMT) and its upstream signalling pathways were elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!