Starting from the structure of the (TTM-TTP)I(3) molecular-based material, we examine the characteristics of frontier molecular orbitals using ab initio (CASSCF/CASPT2) configurations interaction calculations. It is shown that the singly occupied and second-highest-occupied molecular orbitals are close to each other, i.e., this compound should be regarded as a two-orbital system. By dividing virtually the [TTM-TTP] molecule into three fragments, an effective model is constructed to rationalize the origin of this picture. In order to investigate the low-temperature, symmetry breaking experimentally observed in the crystal, the electronic distribution in a pair of [TTM-TTP] molecules is analyzed from CASPT2 calculations. Our inspection supports and explains the speculated intramolecular charge ordering which is likely to give rise to low-energy magnetic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3432764 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!