The interactions of low-energy (5-50 eV) electrons with acetylene-d(2) (C(2)D(2)) adsorbed on the Si(111)-(7x7) surface have been examined by monitoring the stimulated desorption products. These include primary cation desorbates, D(+) and C(2)D(2)(+) (C(2)HD(+)), the fragment ion C(2)D(+), smaller amounts of C(2)(+), CDH(+) (CH(3)(+)), and neutral D((2)S). The approximately 23-25 eV threshold energies for D(+) and hydrocarbon fragment ion detection indicate involvement of two-hole or two-hole one electron final states that Coulomb explode. These multihole states can be created via Auger decay of single holes in shallow core levels localized on C or Si surface atoms. The approximately 12 eV appearance threshold for the C(2)D(2)(+) molecular ion can be correlated with direct excitation of an adsorbate-induced surface state, which may initially possess character of the A(3) surface state of Si. The 18 eV threshold for C(2)D(+) correlates with decomposition of C(2)D(2)(+) with excess vibronic energy. C(2)D(+) desorption via direct excitation of the dissociative (2)Sigma(u)(+)-type state of the C(2)D(2)(+) ion is also possible. The approximately 8 eV threshold energy for production and desorption of neutral D((2)S) may correlate with excitation of the perturbed/mixed F (1)Sigma(u)(+)<--X (1)Sigma(g)(+) and E (1)Sigma(u)(+)<--X(1)Sigma(g)(+) dissociative transitions of adsorbed acetylene molecules. Time-of-flight distributions of D((2)S) indicate both nonthermal (557 and 116 meV; 4300 and 900 K) and thermal (17 meV; 130 K) components. The two fast components can be related to the geometry of di-sigma bonded acetylene on the Si(111)-(7x7) surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3432126 | DOI Listing |
Phytochem Anal
January 2025
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
Objective: This study aimed to qualitatively study the main chemical components of apple peel in APORT, Kazakhstan, by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and to compare the components of apple peels with different provenances.
Methods: An ACQUITY UPLC HSS T3 (100 mm × 2.1 mm, 1.
J Chromatogr A
January 2025
Laboratório Bioquímica e Biofísica, Instituto Butantan, São Paulo, Av. Vital Brasil 1500, São Paulo, SP 05503-900, Brazil. Electronic address:
Although proteins in snake venoms have been extensively studied and characterized, low-mass molecules remain relatively unexplored, mainly due to their low abundance, secondary role in envenomation, and some analytical technique limitations. However, these small molecules can provide new important data related to venom toxins' molecular structure, functions, and evolutionary relationships. This research aimed to characterize molecules below 10 kDa in the venoms of snakes from the Viperidae families (Bothrops, Agkistrodon, and Bitis) and compare two chromatographic approaches: reverse-phase chromatography (RP), a classic technique, and hydrophilic interaction liquid chromatography (HILIC), an alternative technique, both coupled with high-resolution mass spectrometry (HRMS).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Cadmium (Cd) toxicity poses major challenges to rice cultivation, affecting plant growth and development. Wild rice and nanoparticles offer promising strategies to enhance Cd tolerance, yet little is known about their combined effects. This study evaluates the single segment substitution line (SG004) from Oryza glumaepatula (wild rice) and its response to Cd stress compared to cultivated rice (HJX74).
View Article and Find Full Text PDFFood Chem
January 2025
Poznań University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań, Poland. Electronic address:
Catechins, due to their high antioxidant capacity, are ones of the most common ingredients of human diet (e.g. tea, fruits, cacao) of the well-known health benefit properties.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:
Sulfate and sulfonate compounds are extensively used as anionic surfactants in personal care products (PCPs), which might pose adverse potential to human health. However, available research mostly identified certain subsets of sulfated and sulfonated surfactants based on target analysis. In this study, we developed a comprehensive nontarget strategy for identification of sulfated and sulfonated surfactants in PCPs using UHPLCHRMS supplemented by an in-lab R script based on characteristic fragment ions and sulfur isotope patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!