Breast cancer is the leading cause of cancer deaths in women today and is the most common cancer (excluding skin cancers) among women in the Western world. Although cancers detected by screening mammography are significantly smaller than nonscreening ones, noninvasive biomarkers for detection of breast cancer as early as possible are an urgent need as the risk of recurrence and subsequent death is closely related to the stage of the disease at the time of primary surgery. A set of 123 primary breast tumors and matched normal tissue was analyzed by two-dimensional (2D) gel electrophoresis, and a novel protein, C7orf24, was identified as being upregulated in cancer cells. Protein expression levels of C7orf24 were evaluated by immunohistochemical assays to qualify deregulation of this protein. Analysis of C7orf24 expression showed up-regulation in 36.4 and 23.4% of cases present in the discovery sample set (123 samples) and in an independent large TMA validation data set (2197 samples) of clinically annotated breast cancer specimens, respectively. Survival analysis showed that C7orf24 overexpression defines a subgroup of breast tumors with poor clinical outcome. Up-regulation of C7orf24 was also found in other cancer types. Four of these were investigated in greater detail, and we found that a proportion of tumors (58% in cervical, 38% in lung, 72% in colon, and 46% in breast cancer) expressed C7orf24 at levels exceeding those seen in normal samples. The observed overexpression of this protein in different types of cancer suggests deregulation of C7orf24 to be a general event in epithelial carcinogenesis, indicating that this protein may play an important role in cancer cell biology and thus constitute a novel therapeutic target. Furthermore, as C7orf24 is externalized to the tissue extracellular fluid and can be detected in serum, this protein also represents a potential serological marker.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr100160u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!