Packed DNA denatures on gold nanoparticles.

J Phys Chem B

Department of Chemical Physics and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel.

Published: July 2010

Toward the construction of double stranded DNA-based biosensors, packing of thiolated double-stranded DNA adsorbed on gold nanoparticles was observed to induce DNA denaturation. The denaturation was investigated as a function of DNA density, nanoparticle surface area, and DNA length. Direct correlation was found between DNA surface coverage and the denaturation. Denaturation occurred only at high densities of adsorbed DNA and was dependent on DNA length and therefore stability, providing guidelines for controlled adsorption of dsDNA on GNPs. Our results invoke a model in which the formation of a thiol-gold bond competes with the free energy associated with the denaturation of two DNA strands. Denaturation vacates space for additional molecules to bind through a thiol-gold bond.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp104533qDOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
dna
8
denaturation denaturation
8
dna length
8
thiol-gold bond
8
denaturation
6
packed dna
4
dna denatures
4
denatures gold
4
nanoparticles construction
4

Similar Publications

A Signal-On Microelectrode Electrochemical Aptamer Sensor Based on AuNPs-MXene for Alpha-Fetoprotein Determination.

Sensors (Basel)

December 2024

Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.

As a crucial biomarker for the early warning and prognosis of liver cancer diseases, elevated levels of alpha-fetoprotein (AFP) are associated with hepatocellular carcinoma and germ cell tumors. Herein, we present a novel signal-on electrochemical aptamer sensor, utilizing AuNPs-MXene composite materials, for sensitive AFP quantitation. The AuNPs-MXene composite was synthesized through a simple one-step method and modified on portable microelectrodes.

View Article and Find Full Text PDF

Diabetes is a widespread metabolic illness. Mismanagement of diabetes can lead to severe complications that tremendously impact patients' quality of life. The assimilation of nanotechnology in diabetes care holds the potential to revolutionize treatment paradigms, improve patient outcomes, and reduce the economic burden associated with this pervasive disease.

View Article and Find Full Text PDF

To ensure the safety of foodstuffs, widespread non-laboratory monitoring for pathogenic contaminants is in demand. A suitable technique for this purpose is lateral flow immunoassay (LFIA) which combines simplicity, rapidity, and productivity with specific immune detection. This study considered three developed formats of LFIA for Typhimurium, a priority pathogenic contaminant of milk.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a commonly synthetic chemical mainly used in producing plastic items. It is an endocrine-disrupting compound that causes irreversible health and environmental damage. Developing a simple method for BPA effective quantitative monitoring is emergently necessary.

View Article and Find Full Text PDF

Fluphenazine (FPZ) is a well-known neuroleptic that has attracted considerable scientific interest due to its biocidal, virucidal, and antitumor properties. Although methods for encapsulating and delivering FPZ to enhance its activity and reduce side effects have been developed, there is still limited knowledge about its conjugates with gold nanoparticles (AuNPs). Therefore, the aim of this research was to develop a preparation method for stable FPZ-AuNP conjugates and to investigate their physicochemical and biological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!