Time-resolved laser fluorescence spectroscopy (TRLFS) is an analytical technique capable of discriminating different chemical species of a fluorescent metal ion such as UO(2)(2+), Cm(3+), and lanthanides. Although TRLFS has been widely used to investigate the speciation of the fluorescent metal ions, extracting quantitative and structural information from multiple TRLFS data measured as a function of chemical and physical parameters is not a simple task. The purpose of this study is to apply parallel factor analysis (PARAFAC) for the interpretation of a series of TRLFS data. PARAFAC is a robust technique because it utilizes the entire information contained in a multiway TRLFS data set. The complexation of Eu(3+) by acetate was studied as a test case for the PARAFAC decomposition. It is shown that three factors are necessary and sufficient to explain the systematic variations in the original data set. The resulting spectra, decay, and relative concentrations of the factors were all in agreement with the fluorescent properties and the complexation behaviors of Eu(3+)-acetate complexes. Based on these results, it was concluded that PARAFAC is a promising data analysis tool for TRLFS used for the speciation studies of fluorescent metal ions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es9036995DOI Listing

Publication Analysis

Top Keywords

fluorescent metal
12
trlfs data
12
parallel factor
8
factor analysis
8
time-resolved laser
8
laser fluorescence
8
fluorescence spectroscopy
8
metal ions
8
data set
8
trlfs
6

Similar Publications

Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers.

View Article and Find Full Text PDF

Introduction: Cistanche deserticola Ma (CD), an edible and medicinal plant native to Xinjiang, Inner Mongolia, and Gansu in China, is rich in bioactive polysaccharides known for their health-promoting properties. The polysaccharides of C. deserticola (CDPs) have been shown to possess a range of beneficial activities, including immunomodulatory, anti-aging, antioxidant, and anti-osteoporosis effects.

View Article and Find Full Text PDF

The detection of organophosphorus pesticides, particularly chlorpyrifos, in environmental samples is essential due to their widespread use and associated health risks. In this study, we developed a high-sensitivity fluorescent sensing platform utilizing an Isatin-3-allyl-terbium (IS-Tb) complex in solution for the rapid and selective detection of chlorpyrifos in various water samples. The proposed chemical structure of the complex in solution was evaluated using molar ratio method.

View Article and Find Full Text PDF

A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.

View Article and Find Full Text PDF

Recent Advances in Biosensors Using Enzyme-Stabilized Gold Nanoclusters.

Biosensors (Basel)

December 2024

Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea.

Recently, gold nanoclusters (AuNCs) have been widely used in biological applications due to their ultrasmall size, ranging within a few nanometers; large specific surface area; easy functionalization; unique fluorescence properties; and excellent conductivity. However, because they are unstable in solution, AuNCs require stabilization by using ligands such as dendrimers, peptides, DNA, and proteins. As a result, the properties of AuNCs and their formation are determined by the ligand, so the selection of the ligand is important.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!