The introduction of all-hydrocarbon i,i+3 staples into alpha-helical peptide scaffolds via ring-closing olefin metathesis (RCM) between two alpha-methyl,alpha-pentenylglycine residues incorporated at i and i+3 positions, which lie on the same face of the helix, has been investigated. The reactions were found to be highly dependent upon the side-chain stereochemistry of the amino acids undergoing RCM. The i,i+3 stapling system established here provides a potentially useful alternative to the well-established i,i+4 stapling system now in widespread use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol1010449 | DOI Listing |
Mol Pharm
March 2018
Institute for Chemical Research , Kyoto University, Uji , Kyoto 611-0011 , Japan.
All-hydrocarbon stapled peptides make up a promising class of protein-protein interaction regulators; their potential therapeutic benefit arises because they have a high binding affinity and specificity for intracellular molecules. The cell permeation efficacy of these peptides is a critical determinant of their bioactivity. However, the factors that determine their cellular uptake remain an active area of research.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2018
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139;
Bcl-2 family proteins regulate apoptosis, and aberrant interactions of overexpressed antiapoptotic family members such as Mcl-1 promote cell transformation, cancer survival, and resistance to chemotherapy. Discovering potent and selective Mcl-1 inhibitors that can relieve apoptotic blockades is thus a high priority for cancer research. An attractive strategy for disabling Mcl-1 involves using designer peptides to competitively engage its binding groove, mimicking the structural mechanism of action of native sensitizer BH3-only proteins.
View Article and Find Full Text PDFMethods Enzymol
April 2012
Department of Chemistry and Chemical Biology, Harvard University, and Program in Cancer Chemical Biology, Dana - Farber Cancer Institute, Boston, Massachusetts, USA.
Proteins that engage in intracellular interactions with other proteins are widely considered among the most biologically appealing yet chemically intractable targets for drug discovery. The critical interaction surfaces of these proteins typically lack the deep hydrophobic involutions that enable potent, selective targeting by small organic molecules, and their localization within the cell puts them beyond the reach of protein therapeutics. Considerable interest has therefore arisen in next-generation targeting molecules that combine the broad target recognition capabilities of protein therapeutics with the robust cell-penetrating ability of small molecules.
View Article and Find Full Text PDFOrg Lett
July 2010
Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, USA.
The introduction of all-hydrocarbon i,i+3 staples into alpha-helical peptide scaffolds via ring-closing olefin metathesis (RCM) between two alpha-methyl,alpha-pentenylglycine residues incorporated at i and i+3 positions, which lie on the same face of the helix, has been investigated. The reactions were found to be highly dependent upon the side-chain stereochemistry of the amino acids undergoing RCM. The i,i+3 stapling system established here provides a potentially useful alternative to the well-established i,i+4 stapling system now in widespread use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!