Rapid determination of antigenic epitopes in human NGAL using NMR.

Biopolymers

Advanced Technology, Global Pharmaceutical Research and Development, Abbott, Abbott Park, IL 60064, USA.

Published: July 2010

The recent remarkable rise in biomedical applications of antibodies and their recombinant constructs has shifted the interest in determination of antigenic epitopes in target proteins from the areas of protein science and molecular immunology to the vast fields of modern biotechnology. In this article, we demonstrated that measuring binding induced changes in two-dimensional NMR spectra enables rapid determination of antibody binding footprints on target protein antigens. Such epitopes recognized by six high-affinity monoclonal murine antibodies (mAbs) against human neutrophil gelatinase-associated lipocalin (NGAL) were determined by measuring chemical shifts or broadening of peaks in (1)H-(15)N-TROSY HSQC and (1)H-(13)C HSQC spectra of isotope-labeled NGAL occurring upon its binding to the antibodies. Locations of the epitopes defined by the NMR studies are in good agreement with the results of antibody binding pairing observed by dual-color fluorescence cross-correlation spectroscopy. In all six cases, the antibodies recognize conformational epitopes in regions of relatively rigid structure on the protein. None of the antibodies interact with the more flexible funnel-like opening of the NGAL calyx. All determined epitope areas in NGAL reflect the dimensions of respective antibody binding surface (paratopes) and contain amino acid residues that provide strong interactions. This NMR-based approach offers comprehensive information on antigenic epitopes and can be applied to numerous protein targets of diagnostic or therapeutic interest.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.21417DOI Listing

Publication Analysis

Top Keywords

antigenic epitopes
12
antibody binding
12
rapid determination
8
determination antigenic
8
epitopes
6
ngal
5
antibodies
5
binding
5
epitopes human
4
human ngal
4

Similar Publications

Peptide-based vaccine design against Hendra virus through immunoinformatics approach.

Vet Immunol Immunopathol

December 2024

Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan. Electronic address:

The Hendra virus (HeV) has resulted in epidemics of respiratory and neurological illnesses in animals. Humans have contracted diseases with high fatality rates as a result of infected domestic animals, but effective vaccinations and therapies are currently not available against HeV. Herein, we analyzed the proteome of HeV and constructed an effective and innovative multi-epitope vaccine using immunoinformatics techniques.

View Article and Find Full Text PDF

Patient-derived NMDAR mAbs combined with single-particle cryo-electron microscopy reveal multiple GluN1 epitopes and distinct functional effects.

View Article and Find Full Text PDF

Current diagnosis and treatment of rheumatoid arthritis (RA) is still challenging. More than one-third of patients with RA could not be accurately diagnosed because of lacking biomarkers. Our recent study reported that scavenger receptor-A (SR-A) is a biomarker for RA, especially for anticyclic citrullinated peptide antibody (anti-CCP)-negative RA.

View Article and Find Full Text PDF

Its own architect: Flipping cardiolipin synthase.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Article Synopsis
  • Current understanding posits that lipid asymmetry in cell membranes is actively kept and not essential for survival, yet the inner membrane (IM) shows notable asymmetry.
  • Researchers created a specific mutant lacking phosphatidylethanolamine (PE) that relies on cardiolipin (CL) for its IM viability, uncovering how the distribution of CL is regulated in the membrane.
  • The study reveals that the enzyme ClsA adapts its structure in response to varying levels of PE, highlighting a potentially novel mechanism for sustaining lipid asymmetry in membranes without the need for specialized flippase proteins.
View Article and Find Full Text PDF

Liver cancer is the sixth most frequent malignancy and the fourth major cause of deaths worldwide. The current treatments are only effective in early stages of cancer. To overcome the therapeutic challenges and exploration of immunotherapeutic options, broad spectral therapeutic vaccines could have significant impact.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!