A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ADP mediates inhibition of insulin secretion by activation of P2Y13 receptors in mice. | LitMetric

Aims/hypotheses: To investigate the effects of extracellular purines on insulin secretion from mouse pancreatic islets.

Methods: Mouse islets and beta cells were isolated and examined with mRNA real-time quantification, cAMP quantification and insulin and glucagon secretion. ATP release was measured in MIN6c4 cells. Insulin and glucagon secretion were measured in vivo after glucose injection.

Results: Enzymatic removal of extracellular ATP at low glucose levels increased the secretion of both insulin and glucagon, while at high glucose levels insulin secretion was reduced and glucagon secretion was stimulated, indicating an autocrine effect of purines. In MIN6c4 cells it was shown that glucose does induce release of ATP into the extracellular space. Quantitative real-time PCR demonstrated the expression of the ADP receptors P2Y(1) and P2Y(13) in both intact mouse pancreatic islets and isolated beta cells. The stable ADP analogue 2-MeSADP had no effect on insulin secretion. However, co-incubation with the P2Y(1) antagonist MRS2179 inhibited insulin secretion, while co-incubation with the P2Y(13) antagonist MRS2211 stimulated insulin secretion, indicating that ADP acting via P2Y(1) stimulates insulin secretion, while signalling via P2Y(13) inhibits the secretion of insulin. P2Y(13) antagonism through MRS2211 per se increased the secretion of both insulin and glucagon at intermediate (8.3 mmol/l) and high (20 mmol/l) glucose levels, confirming an autocrine role for ADP. Administration of MRS2211 during glucose injection in vivo resulted in both increased secretion of insulin and reduced glucose levels.

Conclusions/interpretation: In conclusion, ADP acting on the P2Y(13) receptors inhibits insulin release. An antagonist to P2Y(13) increases insulin release and could be evaluated for the treatment of diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-010-1807-8DOI Listing

Publication Analysis

Top Keywords

insulin secretion
28
insulin glucagon
16
secretion insulin
16
insulin
15
secretion
14
glucagon secretion
12
glucose levels
12
increased secretion
12
p2y13 receptors
8
mouse pancreatic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!