In this study, silver-loaded coral hydroxyapatites (SLCHAs) were used as scaffolds for bone tissue engineering. The SLCHAs were prepared by surface adsorption process and ion-exchange reaction between Ca(2+) of coral hydroxyapatite (CHA) and Ag(+) of silver nitrate with different concentrations at room temperature. The properties of the composite SLCHAs were investigated by inductively coupled plasma-atomic emission spectrometry (ICP-AES), scanning electron microscropy (SEM) equipped with backscattered electron detector (BSE), and energy-dispersive X-ray spectrometer (EDS). The SEM images showed that the morphology of the SLCHAs depended on the content of Ag(+), and the silver ions were uniformly distributed on the surface of SLCHAs. The ICP-AES results demonstrated that the silver content of the SLCHAs decreased along with the decrease of the concentration of silver nitrate. The SLCHAs were found effective against Escherichia coli and Staphylococcus aureus by antibacterial test. Mouse embryonic pre-osteoblast cells (MC3T3-E1) were used to test the cytocompatibility of SLCHAs, CHA, and pure coral. Cell morphology and cell proliferation were studied with SEM, laser scanning confocal microscope (LSCM), and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay after 1, 3, and 5 days of culture. The results indicated the cell morphology and proliferation on the scaffolds of Ag(+) (13.6 microg/ml)/CHA and Ag(+) (1.7 microg/ml)/CHA were better than that on Ag(+) (170 microg/ml)/CHA. In addition, adhesion of MC3T3-E1 on the scaffolds showed that the confluent cells showed fusiform shape and arranged tightly on the scaffolds. All the results showed that the antibacterial SLCHAs would have potential clinical application as the scaffolds for bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-010-4101-xDOI Listing

Publication Analysis

Top Keywords

slchas
9
silver-loaded coral
8
coral hydroxyapatite
8
scaffolds bone
8
bone tissue
8
tissue engineering
8
ag+ silver
8
silver nitrate
8
cell morphology
8
scaffolds
5

Similar Publications

In this study, the scaffolds based on mineralized silver-loaded coral hydroxyapatites (SLCHAs) were developed for bone regeneration in the radius of rabbit with a 15-mm infective segmental defect model for the first time. The SLCHAs were achieved by surface adsorption and ion-exchange reaction between Ca(2+) of coral hydroxyapatite (CHA) and Ag(+) of silver nitrate with different concentration at room temperature. Release experiment in vitro, X-ray diffraction and scanning electron microscopy equipped with energy-dispersive X-ray spectrometer were applied to exhibit that the scaffold showed some features of natural bone both in main component and hierarchical microstructure.

View Article and Find Full Text PDF

In this study, silver-loaded coral hydroxyapatites (SLCHAs) were used as scaffolds for bone tissue engineering. The SLCHAs were prepared by surface adsorption process and ion-exchange reaction between Ca(2+) of coral hydroxyapatite (CHA) and Ag(+) of silver nitrate with different concentrations at room temperature. The properties of the composite SLCHAs were investigated by inductively coupled plasma-atomic emission spectrometry (ICP-AES), scanning electron microscropy (SEM) equipped with backscattered electron detector (BSE), and energy-dispersive X-ray spectrometer (EDS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!