Cellular senescence is a recognized mechanism of tumour suppression; however, its contribution to other pathologies is not well understood. We show that the matricellular protein CCN1 (also known as CYR61; cysteine-rich protein 61), which is dynamically expressed at sites of wound repair, can induce fibroblast senescence by binding to integrin alpha(6)beta(1) and the heparan sulphate proteoglycans (receptors involved in cell adhesion). CCN1 induces DNA damage response pathways and activates p53 and the RAC1-NOX1 complex, which generates reactive oxygen species (ROS). This results in the ROS-dependent activation of the p16(INK4a)/pRb pathway, leading to senescence and concomitant expression of antifibrotic genes. Senescent fibroblasts accumulate in granulation tissues of healing cutaneous wounds and express antifibrotic genes in wild-type mice. These processes are lost in knockin mice that express a senescence-defective Ccn1 mutant, resulting in exacerbated fibrosis. Topical application of CCN1 protein to wounds reverses these defects. Thus, fibroblast senescence is a CCN1-dependent wound healing response in cutaneous injury that functions to curb fibrosis during tissue repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919364 | PMC |
http://dx.doi.org/10.1038/ncb2070 | DOI Listing |
Front Cell Dev Biol
January 2025
Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China.
Aging often triggers dental pulp fibrosis, resulting in clinical repercussions such as increased susceptibility to dental infections, compromised tooth vitality, and reduced responsiveness to dental interventions. Despite its prevalence, the precise molecular mechanisms underlying this condition remains unclear. Leveraging single-cell transcriptome analysis from both our own and publicly available datasets, we identified Ccrl2 macrophages as particularly vulnerable during the early stages of aging.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital (The Affiliated Lihuili Hospital, Ningbo University), Ningbo, Zhejiang, People's Republic of China.
The prevalent intra- and intertumoral heterogeneity results in undesirable prognosis and therapy failure of pancreatic cancer, potentially resulting from cellular senescence. Herein, integrated analysis of bulk and single-cell RNA-seq profiling was conducted to characterize senescence-based heterogeneity in pancreatic cancer. Publicly available bulk and single-cell RNA sequencing from pancreatic cancer patients were gathered from TCGA-PAAD, PACA-AU, PACA-CA, and GSE154778 datasets.
View Article and Find Full Text PDFCell Death Dis
January 2025
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
Prostate cancer is a heterogeneous disease with a slow progression and a highly variable clinical outcome. The tumor suppressor genes PTEN and TP53 are frequently mutated in prostate cancer and are predictive of early metastatic dissemination and unfavorable patient outcomes. The progression of solid tumors to metastasis is often associated with increased cell plasticity, but the complex events underlying TP53-loss-induced disease aggressiveness remain incompletely understood.
View Article and Find Full Text PDFCell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, SI, Italy.
(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!