Fabry disease is an X-linked disorder caused by mutations in the GLA gene encoding for alpha-galactosidase A (AGA, EC 3.2.1.22). Measurement of AGA enzyme activity using cell homogenates can easily identify men with Fabry disease, but in women, the degree of X-inactivation in the tested tissue may produce activities in homogenates that are indistinguishable from normal. Monti et al. developed a series of lissamine rhodamine-labeled glycosphingolipid substrates that can be used to measure clearance of these lipids in intact cells (1). We report here that one of these substrates, lissamine rhodamine ceramide trihexoside (LR-CTH), can be used as a probe for functional activity of AGA in intact fibroblasts, endothelial cells, and T-lymphocytes from patients with Fabry disease. By utilizing standard detection techniques, such as microscopic imaging, fluorescence microplate spectrophotometry, and flow cytometry, cells with impaired AGA activity can easily be distinguished from wild-type (WT) cells, and these two cell types can be isolated into separate populations using fluorescence-activated cell sorting (FACS). The assay we report here can be adapted to evaluate new therapies by high-throughput screening, can aid in the study of AGA activity in living cells, and can assist in the diagnosis of women with the Fabry trait.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918463 | PMC |
http://dx.doi.org/10.1194/jlr.D007294 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!