MLN4924 is a potent and selective small molecule NEDD8-activating enzyme (NAE) inhibitor. In most cancer cells tested, inhibition of NAE leads to induction of DNA rereplication, resulting in DNA damage and cell death. However, in preclinical models of activated B cell-like (ABC) diffuse large B-cell lymphoma (DLBCL), we show that MLN4924 induces an alternative mechanism of action. Treatment of ABC DLBCL cells with MLN4924 resulted in rapid accumulation of pIkappaBalpha, decrease in nuclear p65 content, reduction of nuclear factor-kappaB (NF-kappaB) transcriptional activity, and G(1) arrest, ultimately resulting in apoptosis induction, events consistent with potent NF-kappaB pathway inhibition. Treatment of germinal-center B cell-like (GCB) DLBCL cells resulted in an increase in cellular Cdt-1 and accumulation of cells in S-phase, consistent with cells undergoing DNA rereplication. In vivo administration of MLN4924 to mice bearing human xenograft tumors of ABC- and GCB-DLBCL blocked NAE pathway biomarkers and resulted in complete tumor growth inhibition. In primary human tumor models of ABC-DLBCL, MLN4924 treatment resulted in NF-kappaB pathway inhibition accompanied by tumor regressions. This work describes a novel mechanism of targeted NF-kappaB pathway modulation in DLBCL and provides strong rationale for clinical development of MLN4924 against NF-kappaB-dependent lymphomas.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2010-03-272567DOI Listing

Publication Analysis

Top Keywords

nf-kappab pathway
12
nedd8-activating enzyme
8
diffuse large
8
large b-cell
8
b-cell lymphoma
8
dna rereplication
8
dlbcl cells
8
pathway inhibition
8
mln4924
7
cells
5

Similar Publications

scRNA-seq reveals elevated interferon responses and TNF-α signaling via NFkB in monocytes in children with uncomplicated malaria.

Exp Biol Med (Maywood)

January 2025

West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.

Malaria causes significant morbidity and mortality worldwide, disproportionately impacting sub-Saharan Africa. Disease phenotypes associated with infection can vary widely, from asymptomatic to life-threatening. To date, prevention efforts, particularly those related to vaccine development, have been hindered by an incomplete understanding of which factors impact host immune responses resulting in these divergent outcomes.

View Article and Find Full Text PDF

Eleutherlene A (), an unprecedented carbon skeleton featuring an aryl-fused 6-methyl-2,7-dioxabicyclo[3.2.1]octane unit, and eleutherlene B (), a naphthoquinone derivative with interesting ring fusion of an α,β-unsaturated γ-lactam and a tetrahydropyran moiety, along with two novel naphthoquinone alkaloids, eleutherlenes C () and D (), were isolated from and identified.

View Article and Find Full Text PDF

Fibroblasts play a pivotal role in key processes within the heart, particularly in cardiac remodeling that follows both ischemic and non-ischemic injury. During remodeling, fibroblasts drive fibrosis and inflammation by reorganizing the extracellular matrix and modulating the immune response, including toll-like receptor (TLR) activation, to promote tissue stabilization. Building on findings from our prior research on heart tissue from patients with advanced coronary artery disease and aortic valve disease, this study sought to explore specific effects of TLR1, TLR3, and TLR7 activation on NF-κB signaling, proinflammatory cytokine production, and γ-protocadherin expression in cardiac fibroblasts.

View Article and Find Full Text PDF

Background: Reovirus (RV) is an oncolytic virus with natural tropism for cancer cells. We previously showed that RV administration in multiple myeloma (MM) patients was safe, but disease control associated with viral replication in the cancer cells was not observed. The combination with proteasome inhibitors (PIs) has shown to enhance RV therapeutic activity, but the mechanisms of action have not been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!