Ari1p from Saccharomyces cerevisiae, recently identified as an intermediate-subclass short-chain dehydrogenase/reductase, contributes in situ to the detoxification of furfural. Furfural inhibits efficient ethanol production by yeast, particularly when the carbon source is acid-treated lignocellulose, which contains furfural at a relatively high concentration. NADPH is Ari1p's best known hydride donor. Here we report the stereochemistry of the hydride transfer step, determined by using (4R)-[4-(2)H]NADPD and (4S)-[4-(2)H]NADPD and unlabeled furfural in Ari1p-catalyzed reactions and following the deuterium atom into products 2-furanmethanol or NADP(+). Analysis of the products demonstrates unambiguously that Ari1p directs hydride transfer from the si face of NADPH to the re face of furfural. The singular orientation of substrates enables construction of a model of the Michaelis complex in the Ari1p active site. The model reveals hydrophobic residues near the furfural binding site that, upon mutation, may increase specificity for furfural and enhance enzyme performance. Using (4S)-[4-(2)H]NADPD and NADPH as substrates, primary deuterium kinetic isotope effects of 2.2 and 2.5 were determined for the steady-state parameters k(cat)(NADPH) and k(cat)/K(m)(NADPH), respectively, indicating that hydride transfer is partially rate limiting to catalysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2916452 | PMC |
http://dx.doi.org/10.1128/AEM.00542-10 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China.
Proton-electron transfer (PET) processes play a pivotal role in numerous electrochemical reactions; yet, effectively harnessing them remains a formidable challenge. Consequently, unveiling the PET pathway is imperative to elucidate the factors influencing the efficiency and selectivity of small molecule electrochemical conversion. In this study, a Zn-NC model catalyst with N and C vacancies was synthesized using a hydriding method to investigate the universal impact of PET on CO electroreduction.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Structural Biochemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany. Electronic address:
Two-component flavin-dependent monooxygenases are of great interest as biocatalysts for the production of pharmaceuticals and other relevant molecules, as they catalyze chemically important reactions such as hydroxylation, epoxidation and halogenation. The monooxygenase components require a separate flavin reductase, which provides the necessary reduced flavin cofactor. The tryptophan halogenase Thal from Streptomyces albogriseolus is a well-characterized two-component flavin-dependent halogenase.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands.
Understanding the electrolyte factors governing the electrochemical CO reduction reaction (CORR) is fundamental for selecting the optimized electrolyte conditions for practical applications. While noble metals are frequently studied, the electrolyte effects on the CORR on Sn catalysts are not well explored. Here, we studied the electrolyte effect on Sn metallic electrodes, investigating the impact of electrolyte concentration, cation identity, and anion properties, and how it shapes the CORR activity and selectivity.
View Article and Find Full Text PDFBeilstein J Org Chem
December 2024
Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy.
The rising popularity of bioconjugate therapeutics has led to growing interest in late-stage functionalization (LSF) of peptide scaffolds. α,β-Unsaturated amino acids like dehydroalanine (Dha) derivatives have emerged as particularly useful structures, as the electron-deficient olefin moiety can engage in late-stage functionalization reactions, like a Giese-type reaction. Cheap and widely available building blocks like organohalides can be converted into alkyl radicals by means of photoinduced silane-mediated halogen-atom transfer (XAT) to offer a mild and straightforward methodology of alkylation.
View Article and Find Full Text PDFChemSusChem
December 2024
University of New England, School of Science and Technology, 1 Elm Avenue, 2351, Armidale, AUSTRALIA.
Levoglucosenone is an important platform chemical and the principal product of acid-catalyzed cellulose pyrolysis, formed through several intermediates including levoglucosan. An acid-catalyzed redox isomerization of substituted 6,8-dioxabicyclo[3.2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!