To elucidate potential roles of CUL4-DDB1-DWD (for Cullin 4-Damaged DNA Binding1-DDB1 binding WD40) E3 ligases in abscisic acid (ABA) signaling, we examined ABA sensitivities of T-DNA mutants of a number of Arabidopsis thaliana DWD genes, which encode substrate receptors for CUL4 E3 ligases. Mutants in two DWD genes, DWA1 and DWA2 (DWD hypersensitive to ABA1 and 2), had ABA-hypersensitive phenotypes. Both proteins interacted with DDB1 in yeast two-hybrid assays and associated with DDB1 and CUL4 in vivo, implying they could form CUL4-based complexes. Several ABA-responsive genes were hyperinduced in both mutants, and the ABA-responsive transcription factors ABA INSENSITIVE 5 (ABI5) and MYC2 accumulated to high levels in the mutants after ABA treatment. Moreover, ABI5 interacted with DWA1 and DWA2 in vivo. Cell-free degradation assays showed ABI5 was degraded more slowly in dwa1 and dwa2 than in wild-type cell extracts. Therefore, DWA1 and/or DWA2 may be the substrate receptors for a CUL4 E3 ligase that targets ABI5 for degradation. Our data indicate that DWA1 and DWA2 can directly interact with each other, and their double mutants exhibited enhanced ABA and NaCl hypersensitivities, implying they can act together. This report thus describes a previously unknown heterodimeric cooperation between two independent substrate receptors for CUL4-based E3 ligases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910972 | PMC |
http://dx.doi.org/10.1105/tpc.109.073783 | DOI Listing |
J Exp Bot
July 2024
Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.
ABSCISIC ACID INSENSITIVE5 (ABI5), a key regulator of the abscisic acid (ABA) signalling pathway, plays a fundamental role in seed germination and post-germinative development. However, the molecular mechanism underlying the repression function of ABI5 remains to be elucidated. In this study, we demonstrate that the conserved eukaryotic WD40 repeat protein Receptor for Activated C Kinase 1 (RACK1) is a novel negative regulator of ABI5 in Arabidopsis.
View Article and Find Full Text PDFPlant Physiol
June 2022
Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA.
Overexpression of ABA-INSENSITIVE5 binding proteins (AFPs) results in extreme ABA resistance of seeds and failure to acquire desiccation tolerance, at least in part through effects on chromatin modification. We tested the hypothesis that AFPs promote germination in Arabidopsis (Arabidopsis thaliana) by also functioning as adapters for E3 ligases that ubiquitinate ABI5, leading to its degradation. Interactions between AFPs and two well-characterized classes of E3 ligases targeting ABI5, DWD HYPERSENSITIVE TO ABA (DWA)s and KEEP ON GOING, were analyzed by yeast two-hybrid, bimolecular fluorescence complementation, and genetic assays.
View Article and Find Full Text PDFSci Total Environ
June 2021
National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China. Electronic address:
Overuse of antibiotics in animal husbandry has led to an increase of antibiotic resistance microorganisms as well as antibiotic-resistance genes (ARGs). Duck farming in China is practiced on a large and diverse scale and the overuse of antibiotics in this field is gaining attention recently. We evaluated the diversity of ARGs from five duck farms using a functional metagenomic approach and constructed five libraries.
View Article and Find Full Text PDFPlant Signal Behav
September 2016
a Department of Biological Sciences , University of Manitoba, Winnipeg , Canada.
A key regulatory mechanism in plant growth, development, and stress signaling utilizes E3 ubiquitin ligases, which target a variety of substrates for degradation. DE-ETIOLATED 1 (DET1) forms a complex with DDB1 (DAMAGED DNA BINDING protein 1) and CUL4 (CULLIN 4), and negatively regulates light signaling. Another DDB1-CUL4 complex containing DWA1 and DWA2 (DWD hypersensitive to ABA 1 and 2) has been shown to negatively regulate abscisic acid (ABA) signaling.
View Article and Find Full Text PDFPlant Sci
October 2015
Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada. Electronic address:
Seed germination is regulated positively by light and negatively by the dormancy-promoting phytohormone abscisic acid (ABA). DE-ETIOLATED 1 (DET1) is a negative regulator of light signalling in Arabidopsis thaliana. In contrast, the bZIP transcription factor LONG HYPOCOTYL 5 (HY5) is a positive regulator of light signalling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!