A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PPARgamma deficiency results in reduced lung elastic recoil and abnormalities in airspace distribution. | LitMetric

Background: Peroxisome proliferator-activated receptor (PPAR)-gamma is a nuclear hormone receptor that regulates gene expression, cell proliferation and differentiation. We previously described airway epithelial cell PPARgamma deficient mice that develop airspace enlargement with decreased tissue resistance and increased lung volumes. We sought to understand the impact of airspace enlargement in conditionally targeted mice upon the physio-mechanical properties of the lung.

Methods: We measured elastic recoil and its determinants, including tissue structure and surface forces. We measured alveolar number using radial alveolar counts, and airspace sizes and their distribution using computer-assisted morphometry.

Results: Air vs. saline-filled pressure volume profiles demonstrated loss of lung elastic recoil in targeted mice that was contributed by both tissue components and surface tension, but was proportional to lung volume. There were no significant differences in surfactant quantity/function nor in elastin and collagen content between targeted animals and littermate controls. Importantly, radial alveolar counts were significantly reduced in the targeted animals and at 8 weeks of age there were 18% fewer alveoli with 32% more alveolar ducts. Additionally, the alveolar ducts were 19% larger in the targeted animals.

Conclusions: Our data suggest that the functional abnormalities, including loss of recoil are secondary to altered force transmission due to differences in the structure of alveolar ducts, rather than changes in surfactant function or elastin or collagen content. These data further define the nature of abnormal lung maturation in the absence of airway epithelial cell PPARgamma and identify a putative genetic determinant of dysanapsis, which may serve as a precursor to chronic lung disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889874PMC
http://dx.doi.org/10.1186/1465-9921-11-69DOI Listing

Publication Analysis

Top Keywords

elastic recoil
12
alveolar ducts
12
lung elastic
8
airway epithelial
8
epithelial cell
8
cell ppargamma
8
airspace enlargement
8
targeted mice
8
radial alveolar
8
alveolar counts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!