Proton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabile P,N ligands: experimental and density functional theory studies.

Inorg Chem

Departamento de Ciencia de Materiales e Ingenieria Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.

Published: July 2010

The trihydride complexes [Cp*RuH(3)(kappa(1)-P-(i)Pr(2)PCH(2)X)] [X = pyridine (Py), 2a; quinoline (Quin), 2b] have been prepared by reaction of the corresponding chloro derivatives [Cp*RuCl(kappa(2)-P,N-(i)Pr(2)PCH(2)X)] [X = Py (1a), Quin (1b)] with NaBH(4) in methanol. Both 2a and 2b exhibit quantum-mechanical exchange coupling. The proton-transfer reactions to 2a and 2b using strong as well as weak proton donors have been experimentally and computationally studied. Density functional theory studies have been performed to analyze the stability of the proposed species, the hydrogen exchange, and the protonation pathway. The reactions with weak donors such as PhCOOH, indole, or salicylic acid in benzene or toluene result in the formation of hydrogen-bonded adducts between the proton donor and the pendant pyridine or quinoline group. However, in a more polar solvent such as dichloromethane, there is spectral evidence for the proton transfer to the hydride to yield a dihydrogen complex. The protonation with CF(3)SO(3)H in CD(2)Cl(2) occurs in a stepwise manner. In a first step, the pendant pyridine or quinoline group is protonated to yield [Cp*RuH(3)(kappa(1)-P-(i)Pr(2)PCH(2)XH)](+) [X = Py (4a) or Quin (4b)]. The NH proton is then transferred to the hydride and one molecule of dihydrogen is released, furnishing the cationic mono(dihydrogen) complexes [Cp*Ru(H(2))(kappa(2)-P,N-(i)Pr(2)PCH(2)X)](+) [X = Py (5a) or Quin (5b)]. These species are thermally stable and do not undergo irreversible rearrangement to their dihydride isomers. In the presence of an excess of acid, a second protonation occurs at the hydride site and the dicationic complexes [Cp*RuH(4)(kappa(1)-P,N-(i)Pr(2)PCH(2)XH)](2+) [X = Py (6a) or Quin (6b)] are generated. These species are stable up to 273 K and consist of equilibrium mixtures between bis(dihydrogen) and dihydrido(dihydrogen) tautomeric forms. Above this temperature, 6a and 6b are converted into the corresponding cationic mono(dihydrogen) complexes 5a/5b. The crystal structures of [Cp*RuCl(kappa(2)-P,N-(i)Pr(2)PCH(2)Quin)] (1b), [Cp*RuH(3)(kappa(1)-P-(i)Pr(2)PCH(2)Quin)] (2b), [Cp*RuH(3)(kappa(1)-P-(i)Pr(2)PCH(2)Py...H...OOCC(6)H(4)OH)] (3a), [Cp*Ru(H(2))(kappa(2)-P,N-(i)Pr(2)PCH(2)Quin)][BAr'(4)] (5b), [Cp*Ru(N(2))(kappa(2)-P,N-(i)Pr(2)PCH(2)Quin)][BAr'(4)] (8b), and [Cp*Ru(O(2))(kappa(2)-P,N-(i)Pr(2)PCH(2)Quin)][BAr'(4)] (9b) are reported.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic100710dDOI Listing

Publication Analysis

Top Keywords

pyridine quinoline
12
proton-transfer reactions
8
trihydride complexes
8
density functional
8
functional theory
8
theory studies
8
pendant pyridine
8
quinoline group
8
cationic monodihydrogen
8
monodihydrogen complexes
8

Similar Publications

Hepatocellular carcinoma () is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated the therapeutic potential of the glucosylceramide synthase (GCS) inhibitor Genz-123346 and the cationic amphiphilic drug aripiprazole on the inhibition of Huh7 and Hepa 1-6 hepatocellular cancer cell and tumor microsphere growth.

View Article and Find Full Text PDF

Introduction of Ivacaftor/Lumacaftor in Children With Cystic Fibrosis Homozygous for F508del in the Netherlands: A Nationwide Real-Life Study.

Pediatr Pulmonol

January 2025

Beatrix Children's Hospital Department of Pediatric Pulmonology and Pediatric Allergy, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Introduction: Lumacaftor/ivacaftor (lum/iva) was introduced in the Netherlands in 2017. We investigated 1-year efficacy of lum/iva on lung function and small airway and structural lung disease evaluated by multiple breath nitrogen washout and CT scan. Additionally, we investigated effects of lum/iva on exacerbations, anthropometry, sweat chloride and safety in children with CF in the Netherlands.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide. Treating HCC is challenging because of the poor drug effectiveness and the lack of tools to predict patient responses. To resolve these issues, we established a patient-centric spheroid model using HepG2, TWNT-1, and THP-1 co-culture, that mimics HCC phenotype.

View Article and Find Full Text PDF

Selected Metal (Au, Ag, and Cu) Complexes of N-heterocyclic Ligands as Potential Anticancer Agents: A Review.

Anticancer Agents Med Chem

January 2025

Department of Pharmaceutics, College of Pharmacy, Jazan University, Saudi Arabia.

Nitrogen-based organic heterocyclic compounds are an important source of therapeutic agents. About 75% of drugs approved by the FDA and currently available in the market are N-heterocyclic organic compounds. The N-heterocyclic organic compounds like pyridine, indole, triazoles, triazine, imidazoles, benzimidazoles, quinazolines, pyrazoles, quinolines, pyrimidines, porphyrin, etc.

View Article and Find Full Text PDF

Background: Recently, pyrido[2,3-] pyrimidine, triazolopyrimidine, thiazolopyrimidine, quinoline, and pyrazole derivatives have gained attention due to their diverse biological activities, including antimicrobial, antioxidant, antitubercular, antitumor, anti-inflammatory, and antiviral effects.

Objective: The synthesis of new heterocyclic compounds including 5-quinoline-pyrido[2,3-] pyrimidinone (-, , -), 6-quinoline-pyrido[2,3-]thiazolo[3,2-]pyrimidinone (, , -), 1,2,4-triazole-6-quinoline-pyrido[2,3-]thiazolo[3,2-]pyrimidinone (-), and pyrido[2,3-]thiazolo[3,2-]pyrimidine-ethyl-(pyridine)-9-thiaazabenzo[]azulenone () derivatives was performed with high yields while evaluating antimicrobial activities.

Methods: A new series of quinoline-pyrido[2,3-]thiazolo[3,2-]pyrimidine derivatives were prepared using a modern style and advanced technology, resulting in high yields of these new compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!