The vibrational dynamics of solid inclusion complexes of the nonsteroidal anti-inflammatory drug Ibuprofen (IBP) with beta-cyclodextrin (beta-CD) and methyl-beta-cyclodextrin (Me-beta-CD) has been investigated by using attenuated total reflection-Fourier transform infrared FTIR-ATR spectroscopy, in order to monitor the changes induced, as a consequence of complexation, on the vibrational spectrum of IBP, in the wavenumber range 600-4000 cm(-1). Quantum chemical calculations were performed on monomeric and dimeric structures of IBP, derived from symmetric hydrogen bonding of the two carboxylic groups, in order to unambiguously assign some characteristic IR bands in the IBP spectrum. The evolution in temperature from 250 to 340 K of the C horizontal lineO stretching vibration, described by a best-fit procedure, allowed us to extract the thermodynamic parameter DeltaH associated to the binding of IBP with betaCDs in the solid phase. By comparing these results, Me-beta-CD has been shown to be the most effective carrier for IBP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp101888g | DOI Listing |
J Chem Phys
January 2025
Department of Chemistry, Columbia University, New York, New York 10027, USA.
In this work, we investigate anharmonic vibrational polaritons formed due to strong light-matter interactions in an optical cavity between radiation modes and anharmonic vibrations beyond the long-wavelength limit. We introduce a conceptually simple description of light-matter interactions, where spatially localized cavity radiation modes couple to localized vibrations. Within this theoretical framework, we employ self-consistent phonon theory and vibrational dynamical mean-field theory to efficiently simulate momentum-resolved vibrational-polariton spectra, including effects of anharmonicity.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.
The computational spectroscopy of water has proven to be a powerful tool for probing the structure and dynamics of chemical systems and for providing atomistic insight into experimental vibrational spectroscopic results. However, such calculations have been limited for biochemical systems due to the lack of empirical vibrational frequency maps for the TIP3P water model, which is used in many popular biomolecular force fields. Here, we develop an empirical map for the TIP3P model and evaluate its efficacy for reproducing the experimental vibrational spectroscopy of water.
View Article and Find Full Text PDFNano Lett
January 2025
Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.
A-site cations in ABX metal halide perovskites do not contribute to the frontier electronic states. They influence optoelectronic properties indirectly through interaction with the BX sublattice. By systematically investigating correlated motions of Cs cations and the PbX lattice (X = Cl, Br, I), we demonstrate that the interaction between the two subsystems depends on electronegativity and size of the X-site anion.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Chemical selectivity is traditionally understood in the context of rigid molecular scaffolds with precisely defined local coordination and chemical environments that ultimately facilitate a given transformation of interest. By contrast, nature leverages dynamic structures and strong coupling to enable specific interactions with target species in otherwise complex media. Taking inspiration from nature, we demonstrate unconventional selectivity in the solvent extraction of light over heavy lanthanides using a conformationally flexible ligand called octadecyl acyclopa (ODA).
View Article and Find Full Text PDFFront Psychol
December 2024
i3, UMR-9217 CNRS Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France.
Touch is an inherent part of human social interactions and the diversity of its functions has been highlighted in numerous works. Given the varied roles of touch, with technology-mediated communication being a big part of our everyday lives, research has been interested in enabling and enhancing distant social interactions with mediated touch over networks. Due to the complexity of the sense of touch and technological limitations, multimodal devices have been developed and investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!