The growing infection rate by methicillin-resistant Staphylococcus aureus, especially with bone fracture fixation implants, is a major concern in extremity musculoskeletal wound treatment. This preliminary investigation evaluates the ability of chitosan film to be loaded with daptomycin and vancomycin in the operating room, in situ loading, and applied to musculoskeletal fixation devices to lessen or prevent infection. Films with 61, 71, and 80% degrees of deacetylation (DDA) made using lactic or acetic acid solvents were analyzed for their antibiotic uptake, elution, and activity along with film swelling ratio, ultimate tensile strength, Young's modulus, adhesive strength, and degradation. Chitosan films after 1 min of rehydration were able in a simulated, clinical setting to maintain mechanical integrity and adhesive strength to be applied to bone fracture fixation devices or implant surfaces. The film percent degradation increased with DDA increasing from 61 to 80%, but film degradation rate decreased in the presence of antibiotics. Eighty percent DDA chitosan films were optimal for absorbing and eluting antibiotics. Antibiotics eluted by the films were active against Staphylococcus aureus. These findings indicate that an 80% DDA chitosan film is potentially advantageous as a clinically adjunctive treatment in musculoskeletal injuries to lessen or prevent infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376318PMC
http://dx.doi.org/10.1002/jbm.b.31642DOI Listing

Publication Analysis

Top Keywords

chitosan film
12
staphylococcus aureus
8
bone fracture
8
fracture fixation
8
fixation devices
8
lessen prevent
8
adhesive strength
8
chitosan films
8
dda chitosan
8
film
6

Similar Publications

Effects of molecular weight of chitosan on its binding ability with OSA starch and oil-water interface behavior of complex-stabilized emulsion.

Int J Biol Macromol

December 2024

School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Vic 3010, Australia. Electronic address:

This work examined the effects of molecular weight (2-15 kDa) and concentration (10-30 mg/mL) of chitosan (CTS) on the binding capacity and interface behavior between octenyl succinic acid sodium starch (OSS) and CTS, as well as their effects on the storage stability of emulsions. The results of the isothermal calorimetry titration demonstrated that OSS and CTS were complexed by electrostatic interaction and spontaneous hydrogen bonding driven by enthalpy (ΔH from -3931 to -7983 cal/mol, ΔS from -38.5 to -49.

View Article and Find Full Text PDF

Aminated carbon nanotubes, CNT, were covalently modified with glutardialdehyde (GDI) and the redox dye Azure to form a new electrode material CNT-GDI-Azure (CGA). The nanocomposite of CGA and polysaccharide chitosan was used for the anodic determination of NADH. Compared to conventional carbon and metal electrodes, the CGA electrode drastically lowered the overpotential for NADH oxidation (by > 0.

View Article and Find Full Text PDF

In this study, chitosan (C)-polyvinyl alcohol (P) edible film containing bio-fabricated nanosilver particles (nAg) (as antimicrobial agent) and beetroot peel extract (BRPE) (as antioxidant agent and pH indicator) was used as spoilage indicator in cold-stored rainbow trout fillets. DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (43.02%), reducing power (2.

View Article and Find Full Text PDF

Food packaging plays a vital role in guaranteeing the quality and safety of fresh products during the storage and distribution. Carboxymethyl chitosan (CMCS) is identified as a promising polymer for food packaging film owing to its film-forming ability, non-toxicity, and biodegradability. Nevertheless, the practical applications of pure CMCS film usually suffer from some limits owing to its poor antibacterial effect and mechanical strength.

View Article and Find Full Text PDF

Enhanced antioxidant and antimicrobial activities of chitosan/oxidized microcrystalline cellulose blended films with Tribulus terrestris extract for food packaging applications.

Int J Biol Macromol

December 2024

Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Türkiye.

Chitosan/oxidized cellulose blended film with Tribulus terrestris (T. terrestris) extract films were successfully produced by casting method. The obtained blend films were characterized by structural, mechanical, optical, permeation, antioxidant, and antimicrobial properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!