Hypophosphatemic rickets (HR) is a group of rare disorders caused by excessive renal phosphate wasting. The purpose of this cross-sectional study of 38 HR patients was to characterize the phenotype of adult HR patients. Moreover, skeletal and endodontic severity scores were defined to assess possible gender differences in disease severity in patients with genetically verified X-linked HR. Compared to normal reference data, i.e., z = 0, HR patients had significantly lower final height, with a mean difference in z-score of -1.9 (95% CI -2.4 to -1.4, P < 0.001). Compared to paired z-scores of final height, z-scores of leg length were significantly lower and those of sitting height were significantly higher (P < 0.001), resulting in disproportion as indicated by the significantly elevated sitting height ratio, mean difference in z-score of 2.6 (95% CI 2.1-3.1, P < 0.001). Z-scores of head circumference (median 1.4, range -0.4 to 5.5, P < 0.001) and z-scores of bone mineral density (BMD) of the lumbar spine (median 1.9, range -1.5 to 8.6, P < 0.001) were significantly elevated compared to normal reference data. The relative risk (RR) of fracture was reduced (RR = 0.34, 95% CI 0.20-0.57, P < 0.001). The skeletal severity score tended to be higher in males compared to females (P = 0.07), and no gender difference in endodontic severity was found. In conclusion, adult HR patients were characterized by short stature and were disproportioned. They had elevated BMD of the lumbar spine and a reduced risk of fractures. We found a tendency for males to be more severely affected than females.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00223-010-9373-0DOI Listing

Publication Analysis

Top Keywords

hypophosphatemic rickets
8
adult patients
8
endodontic severity
8
compared normal
8
normal reference
8
reference data
8
final height
8
difference z-score
8
sitting height
8
0001 z-scores
8

Similar Publications

Tertiary hyperparathyroidism is characterized by hypercalcemia resulting from autonomous parathyroid hormone production and usually occurs after a prolonged period of secondary hyperparathyroidism. This condition can be a complication of X-linked hypophosphatemia (XLH), a rare genetic disease characterized by renal phosphate loss and consequent hypophosphatemia. Parathyroidectomy is considered the first-line therapy but surgical intervention can be complicated by hungry bone syndrome.

View Article and Find Full Text PDF

Clinical, Radiographic, and Molecular Analysis of Patients with X-Linked Hypophosphatemic Rickets: Looking for Phenotype-Genotype Correlation.

Diagnostics (Basel)

January 2025

Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Ciudad de México 14389, Mexico.

Background/objectives: X-linked hypophosphataemic rickets (XLH) represents the most frequent type of rickets from genetic origin, it is caused by mutations on the gene. The main clinical manifestations are short stature and bone deformities. Phenotype variation is observed at the intrafamily and interfamily level.

View Article and Find Full Text PDF

Rickets in children usually present with skeletal manifestations. However, they can also rarely present with extraskeletal manifestations, one of them being respiratory insufficiency. We present an unusual case of a girl in early childhood with respiratory insufficiency, which turned out to be due to the underlying vitamin D-dependent rickets (VDDR).

View Article and Find Full Text PDF

Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is an uncommon hereditary form of rickets characterised by chronic renal phosphate loss and impaired bone mineralisation. This results from compound heterozygous or homozygous pathogenic variants in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a key producer of extracellular inorganic pyrophosphate (PPi) and an inhibitor of fibroblast growth factor23 (FGF23). ENPP1 deficiency impacts FGF23 and increases its activity.

View Article and Find Full Text PDF

Background: Inactivation or mutations of FAM20C causes human Raine Syndrome, which manifests as lethal osteosclerosis bone dysplasia or non-lethal hypophosphatemia rickets. However, it is only hypophosphatemia rickets that was reported in the mice with Fam20c deletion or mutations. To further investigate the local and global impacts of Fam20c mutation, we constructed a knock-in allele carrying Fam20c mutation (D446N) found in the non-lethal Raine Syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!