Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line.

Biometals

Institute for Innovative Cancer Research, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, 138-736, Korea.

Published: December 2010

Treatment of MCF-7 cells with tamoxifen induced vacuole formation and cell death. Levels of the autophagy marker, microtubule-associated protein light chain 3 (LC3)-II also increased, and GFP-LC3 accumulated in and around vacuoles in MCF-7 cells exposed to tamoxifen, indicating that autophagy is involved in tamoxifen-induced changes. Live-cell confocal microscopy with FluoZin-3 staining and transmission electron microscopy with autometallographic staining revealed that labile zinc(II) ion (Zn(2+)) accumulated in most acidic LC3(+) autophagic vacuoles (AVs). Chelation of Zn(2+) with N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) blocked the increase in phospho-Erk and LC3-II levels, and attenuated AV formation and cell death. Conversely, the addition of ZnCl(2) markedly potentiated tamoxifen-induced extracellular signal-regulated kinase (Erk) activation, autophagy and cell death, indicating that Zn(2+) has an important role in these events. Tamoxifen-induced death was accompanied by increased oxidative stress and lysosomal membrane permeabilization (LMP) represented as release of lysosomal cathepsins into cytosol. Treatment with the antioxidant N-acetyl-L-cysteine (NAC) blunted the increase in Zn(2+) levels and reduced LC3-II conversion, cathepsin D release and cell death induced by tamoxifen. And cathepsin inhibitors attenuated cell death, indicating that LMP contributes to tamoxifen-induced cell death. Moreover, TPEN blocked tamoxifen-induced cathepsin D release and increase in oxidative stress. The present results indicate that Zn(2+) contributes to tamoxifen-induced autophagic cell death via increase in oxidative stress and induction of LMP.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10534-010-9346-9DOI Listing

Publication Analysis

Top Keywords

cell death
32
oxidative stress
12
cell
9
death
9
zincii ion
8
autophagy cell
8
mcf-7 cells
8
formation cell
8
tpen blocked
8
death indicating
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!