Cholesterol is a sterol lipid that plays pleiotropic roles in the plasma membrane; it is involved in maintaining membrane fluidity and permeability and the structure of lipid microdomains. Despite its importance, the consequences of membrane cholesterol depletion during cardiac differentiation have not been described. Therefore, we investigated the cellular and molecular mechanisms associated with cholesterol depletion in cultures of chick cardiac cells. We used methyl-beta-cyclodextrin (MCD) to deplete membrane cholesterol and investigate its role in cardiac differentiation by following the expression of several markers including the transcriptional factor Nkx2.5, the myofibrillar protein tropomyosin, the cytoskeletal intermediate filament protein desmin, the caveolar protein caveolin-3, the cadherin/beta-catenin adhesion complex, and the junctional protein connexin 43. Confocal microscopy showed that desmin-positive cells were located more externally in the aggregates in relation to the more internally located caveolin-3-positive cells. Desmin and caveolin-3 were co-localized in filamentous structures in the subsarcolemmal region of well-spread cells outside the aggregates. beta-Catenin was concentrated in regions of cell-cell contact, and tropomyosin in sarcomeric structures. Western blot tests showed that immediately following cholesterol depletion, there was a slight decrease in the expression of caveolin-3 and desmin, and at the same time there was a sharp increase in the expression of cadherin, tropomyosin, Nkx2.5 and connexin 43. Further, we found an increase in the expression of cardiac beta-myosin heavy chain 7, a marker of the cardiac hypertrophic phenotype. These observations suggest that membrane cholesterol plays a significant role in regulating cardiomyocyte differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000316005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!