Escherichia coli K-12 YfgF is an anaerobic cyclic di-GMP phosphodiesterase with roles in cell surface remodelling and the oxidative stress response.

Microbiology (Reading)

The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.

Published: September 2010

The Escherichia coli K-12 yfgF gene encodes a protein with domains associated with cyclic di-GMP signalling: GGDEF (associated with diguanylate cyclase activity) and EAL (associated with cyclic di-GMP phosphodiesterase activity). Here, it is shown that yfgF is expressed under anaerobic conditions from a class II FNR (regulator of fumarate and nitrate reduction)-dependent promoter. Anaerobic expression of yfgF is greatest in stationary phase, and in cultures grown at 28 degrees C, suggesting that low growth rates promote yfgF expression. Mutation of yfgF resulted in altered cell surface properties and enhanced sensitivity when anaerobic cultures were exposed to peroxides. The purified YfgF GGDEF-EAL (YfgF(GE)) and EAL (YfgF(E)) domains possessed cyclic di-GMP-specific phosphodiesterase activity, but lacked diguanylate cyclase activity. However, the catalytically inactive GGDEF domain was required for YfgF(GE) dimerization and enhanced cyclic di-GMP phosphodiesterase activity in the presence of physiological concentrations of Mg(2+). The cyclic di-GMP phosphodiesterase activity of YfgF(GE) and YfgF(E) was inhibited by the product of the reaction, 5'-phosphoguanylyl-(3'-5')-guanosine (pGpG). Thus, it is shown that the yfgF gene encodes an anaerobic cyclic di-GMP phosphodiesterase that is involved in remodelling the cell surface of E. coli K-12 and in the response to peroxide shock, with implications for integrating three global regulatory networks, i.e. oxygen regulation, cyclic di-GMP signalling and the oxidative stress response.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.037887-0DOI Listing

Publication Analysis

Top Keywords

cyclic di-gmp
28
di-gmp phosphodiesterase
20
phosphodiesterase activity
16
coli k-12
12
cell surface
12
escherichia coli
8
yfgf
8
k-12 yfgf
8
cyclic
8
anaerobic cyclic
8

Similar Publications

Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.

View Article and Find Full Text PDF

biofilm is a significant virulence factor in infection. This study aimed to investigate antibacterial and antibiofilm activities of extract against . The MIC and MBC values of the extract against the isolates were 0.

View Article and Find Full Text PDF

An improved bacterial single-cell RNA-seq reveals biofilm heterogeneity.

Elife

December 2024

The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.

In contrast to mammalian cells, bacterial cells lack mRNA polyadenylated tails, presenting a hurdle in isolating mRNA amidst the prevalent rRNA during single-cell RNA-seq. This study introduces a novel method, ribosomal RNA-derived cDNA depletion (RiboD), seamlessly integrated into the PETRI-seq technique, yielding RiboD-PETRI. This innovative approach offers a cost-effective, equipment-free, and high-throughput solution for bacterial single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

Urinary tract infections (UTIs), primarily caused by uropathogenic (UPEC), have high morbidity and recurrence rates. Resistance to levofloxacin hydrochloride (LEV), a commonly used treatment for UTIs, is increasingly problematic, exacerbated by biofilm formation mediated by interactions between cyclic di-GMP (c-di-GMP or CDG) and YcgR. In this study, we identified three caffeoylquinic acid compounds from -chlorogenic acid (CGA), sibiricose A5 (Si-A5), and 3--caffeoylquinic acid methyl ester (CAM)-that target YcgR through molecular docking.

View Article and Find Full Text PDF

Bacterial noncoding RNAs fulfill a variety of cellular functions as catalysts, as scaffolds in protein complexes or as regulators of gene expression. They often exhibit complex tertiary structures that are a key determinant of their biochemical function. Here, we characterize the structured "raiA motif" RNA from Clostridioides difficile, which is conserved in more than 2,500 bacterial species from the phyla Bacillota and Actinomycetota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!