Lithium salts have been used as a class of mood stabilizing agents to treat bipolar disorders for over a century. Although lithium is known to affect cell proliferation, apoptosis and migration, the underlying mechanisms have not been well-explored. Emerging evidence indicates that cell volume regulation and volume-activated chloride channels are involved in cell proliferation, apoptosis and migration. To understand the mechanism of lithium's actions, we investigated the effect of lithium chloride on cell volume regulation and volume-activated chloride channels in the nasopharyngeal carcinoma cell line CNE-2Z. Our results show that lithium chloride attenuates regulatory volume decrease induced by 47% hypotonic challenges in a concentration-dependent manner with an IC(50) of 756 microM. Using the patch clamp techniques, we further show that lithium chloride concentration-dependently (IC(50)=440 microM) inhibits the volume-activated chloride current as well as the background chloride current. Furthermore, using a nanoscale atomic force microscope, we show that lithium chloride prevents the hypotonic challenge-induced changes in the ultrastructures of the cell membrane. These changes include an increase in the number and the size of the small holes, which are observed in the surface of the cell membrane under isotonic conditions. The lithium chloride-induced inhibition in cell volume regulation, in volume-activated chloride current and in the ultrastructures of the cell membrane may contribute to its effects on cell proliferation, apoptosis and migration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2010.05.015DOI Listing

Publication Analysis

Top Keywords

cell volume
16
volume regulation
16
cell membrane
16
volume-activated chloride
16
lithium chloride
16
cell
12
chloride channels
12
ultrastructures cell
12
cell proliferation
12
proliferation apoptosis
12

Similar Publications

Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes.

View Article and Find Full Text PDF

Objective: Gestational diabetes mellitus (GDM) is one of the most common complications during pregnancy. There is inconsistency between previous studies regarding the blood and inflammatory parameters levels among pregnant women and its association with GDM. This study aimed to investigate the relationship between blood parameters in relation to GDM.

View Article and Find Full Text PDF

As an advanced nucleic acid therapeutical modality, mRNA can express any type of protein in principle and thus holds great potential to prevent and treat various diseases. Despite the success in COVID-19 mRNA vaccines, direct local delivery of mRNA into the lung by inhalation would greatly reinforce the treatment of pulmonary pathogens and diseases. Herein, we developed lipid nanoparticles (LNPs) from degradable ionizable glycerolipids for potent pulmonary mRNA delivery via nebulization.

View Article and Find Full Text PDF

Development of machine learning models for diagnostic biomarker identification and immune cell infiltration analysis in PCOS.

J Ovarian Res

January 2025

Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Background: Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age. It is characterized by symptoms such as hyperandrogenemia, oligo or anovulation and polycystic ovarian, significantly impacting quality of life. However, the practical implementation of machine learning (ML) in PCOS diagnosis is hindered by the limitations related to data size and algorithmic models.

View Article and Find Full Text PDF

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!