Turgor pressure provides a sensitive indicator for irrigation scheduling. Leaf turgor pressure of Musa acuminate was measured by using the so-called leaf patch clamp pressure probe, i.e. by application of an external, magnetically generated and constantly retained clamp pressure to a leaf patch and determination of the attenuated output pressure P(p) that is highly correlated with the turgor pressure. Real-time recording of P(p) values was made using wireless telemetric transmitters, which send the data to a receiver base station where data are logged and transferred to a GPRS modem linked to an Internet server. Probes functioned over several months under field and laboratory conditions without damage to the leaf patch. Measurements showed that the magnetic-based probe could monitor very sensitively changes in turgor pressure induced by changes in microclimate (temperature, relative humidity, irradiation and wind) and irrigation. Irrigation effects could clearly be distinguished from environmental effects. Interestingly, oscillations in stomatal aperture, which occurred frequently below turgor pressures of 100 kPa towards noon at high transpiration or at high wind speed, were reflected in the P(p) values. The period of pressure oscillations was comparable with the period of oscillations in transpiration and photosynthesis. Multiple probe readings on individual leaves and/or on several leaves over the entire height of the plants further emphasised the great impact of this non-invasive turgor pressure sensor system for elucidating the dynamics of short- and long-distance water transport in higher plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1438-8677.2009.00235.xDOI Listing

Publication Analysis

Top Keywords

turgor pressure
24
leaf patch
16
clamp pressure
12
pressure
11
patch clamp
8
pressure probe
8
turgor
7
leaf
5
effects environmental
4
environmental parameters
4

Similar Publications

Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally.

View Article and Find Full Text PDF

A viscoelastic-plastic deformation model of hemisphere-like tip growth in Arabidopsis zygotes.

Quant Plant Biol

December 2024

Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo, Japan.

Plant zygote cells exhibit tip growth, producing a hemisphere-like tip. To understand how this hemisphere-like tip shape is formed, we revisited a viscoelastic-plastic deformation model that enabled us to simultaneously evaluate the shape, stress and strain of Arabidopsis () zygote cells undergoing tip growth. Altering the spatial distribution of cell wall extensibility revealed that cosine-type distribution and growth in a normal direction to the surface create a stable hemisphere-like tip shape.

View Article and Find Full Text PDF

Transglutaminases (TGases) are enzymes highly conserved among prokaryotic and eukaryotic organisms, where their role is to catalyze protein cross-linking. One of the putative TGases of has previously been shown to be localized to the cell wall. Based on sequence similarity we were able to identify six more genes annotated as putative TGases and show that these seven genes group together in phylogenetic analysis.

View Article and Find Full Text PDF

Introduction: Accurate diagnosis of the water status of fruit trees is a prerequisite for precise irrigation. Measurement of leaf turgor pressure provides a means to explore the water utilization mechanisms of fruit trees and their responses to water stress. However, there are few studies on the use of daily minimum leaf turgor pressure (Ppmax) to indicate water information in apple tree.

View Article and Find Full Text PDF

There is a growing interest in the development of methods for the detection of nanoparticle (NP) toxicity to living organisms based on the analysis of relevant multidimensional data sets. In particular the detection of preliminary signs of NPs toxicity effects would benefit from the selection of data featuring NPs-induced alterations of biological barriers. Accordingly, we present an original Topological Data Analysis (TDA) of the nanomechanical properties of Escherichia coli cell surface, evaluated by multiparametric Atomic Force Microscopy (AFM) after exposure of the cells to increasing concentrations of titanium dioxide nanoparticles (TiONPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!