A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diphtheria toxoid conformation in the context of its nanoencapsulation within liposomal particles sandwiched by chitosan. | LitMetric

Diphtheria toxoid conformation in the context of its nanoencapsulation within liposomal particles sandwiched by chitosan.

J Liposome Res

Laboratório de Microesferas e Lipossomas, Centro de Biotecnologia, I. Butantan, São Paulo, Brasil.

Published: June 2011

Chitosan (α-(1-4)-amino-2-deoxy-β-D-glucan) is a deacetylated form of chitin, a polysaccharide from crustacean shells. Its unique characteristics, such as positive charge, biodegradability, biocompatibility, nontoxicity, and rigid structure, make this macromolecule ideal for an oral vaccine delivery system. We prepared reverse-phase evaporation vesicles (REVs) sandwiched by chitosan (Chi) and polyvinylic alcohol (PVA). However, in this method, there are still some problems to be circumvented related to protein stabilization. During the inverted micelle phase of protein nanoencapsulation, hydrophobic interfaces are expanded, leading to interfacial adsorption, followed by protein unfolding and aggregation. Here, spectroscopic and immunological techniques were used to ascertain the effects of the Hoffmeister series ions on diphtheria toxoid (Dtxd) stability during the inverted micelle phase. A correlation was established between the salts used in aqueous solutions and the changes in Dtxd solubility and conformation. Dtxd α-helical content was quite stable, which led us to conclude that encapsulation occurred without protein aggregation or without exposition of hydrophobic residues. Dtxd aggregation was 98% avoided by the kosmotropic, PO(2-)(4). This ion was used to prepare a stable Dtxd and immunologically recognized REV-Chi-PVA formulation in the presence of 50 mM of PO(2-)(4). Under these conditions, the Dtxd retained its immunological identity. Therefore, we could obtain the maximum Dtxd solubility and stability after contact with CH(3)CO(2)C(2)H(5) to begin its nanoencapsulation within ideal conditions. This was a technological breakthrough, because a simple solution, such as salt, addition avoided heterologous protein use.

Download full-text PDF

Source
http://dx.doi.org/10.3109/08982104.2010.491072DOI Listing

Publication Analysis

Top Keywords

diphtheria toxoid
8
sandwiched chitosan
8
inverted micelle
8
micelle phase
8
dtxd solubility
8
dtxd
7
protein
5
toxoid conformation
4
conformation context
4
context nanoencapsulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!