The tenacity of three low pathogenicity avian influenza viruses (AIV; subtypes H4N6, H5N1, and H6N8) was tested at five different temperatures (-10, 0, 10, 20, and 30 C) in distilled water, normal saline, and surface water obtained from Lake Constance. Infectivity of AIV in the samples was quantified at regular intervals by end point titration on Madin-Darby canine kidney cells for a maximum period of 36 wk, and duplicate samples were tested each time. The results showed that the survival time of AIV in all of the water types was inversely proportional to storage temperature. All three viruses showed varying sensitivity to inactivation under each of the experimental conditions. Persistence of the viruses was the longest in distilled water, second longest in normal saline, and shortest in surface water. The virus-inoculated surface water remained infective for a few days at 30 and 20 C, a few weeks at 10 C, and for months at 0 and -10 C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1637/8754-033109-ResNote.1 | DOI Listing |
PLoS One
December 2024
Group of Atmospheric Optics (GOA-UVa), Universidad de Valladolid, Valladolid, Spain.
This work introduces CAECENET, a new system capable of automatically retrieving columnar and vertically-resolved aerosol properties running the GRASP (Generalized Retrieval of Atmosphere and Surface Properties) algorithm using sun-sky photometer (aerosol optical depth, AOD; and sky radiance measurements) and ceilometer (range corrected signal; RCS) data as input. This method, so called GRASPpac, is implemented in CAECENET, which assimilates sun-sky photometers data from CÆLIS database and ceilometer data from ICENET database (Iberian Ceilometer Network). CAECENET allows for continuous and near-real-time monitoring of both vertical and columnar aerosol properties.
View Article and Find Full Text PDFLangmuir
December 2024
Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais-Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil.
Electrodialysis (ED) has already been applied to recover nickel in galvanizing processes, allowing nickel recovery and the production of a treated effluent with demineralized water quality. However, the growth in ED use is still limited by the production and commercialization of ion-selective membranes, currently limited to a few large companies. Therefore, this paper presents the development of homogeneous cationic and anionic membranes made from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for ED use.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.
As pressure on water resources intensifies and stringent regulations for groundwater and surface water are enacted, wastewater recycling has emerged as a key research objective for many enterprises. In this study, based on the actual wastewater discharged from Eternal Electronic (Suzhou, China) Co., Ltd.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 "James Bourchier" Blvd., 1164 Sofia, Bulgaria.
Poly(butyl cyanoacrylate) (PBCA) nanoparticles have numerous applications, including drug and gene delivery, molecular imaging, and cancer therapy. To uncover the molecular mechanisms underlying their interactions with cell membranes, we utilized a Langmuir monolayer as a model membrane system. This approach enabled us to investigate the processes of penetration and reorganization of PBCA nanoparticles when deposited in a phospholipid monolayer subphase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!