Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/scientificamerican0610-14 | DOI Listing |
Nano Lett
January 2025
Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071, United States.
Anisotropic materials with low symmetries hold significant promise for next-generation electronic and quantum devices. 2M-WS, which is a candidate for topological superconductivity, has garnered considerable interest. However, a comprehensive understanding of how its anisotropic features contribute to unconventional superconductivity, along with a simple, reliable method to identify its crystal orientation, remains elusive.
View Article and Find Full Text PDFUltrasound Q
March 2025
Department of Radiology, University of Kentucky College of Medicine, Lexington, KY.
Effective presentations are crucial for disseminating knowledge and cultivating skilled learners. Cognitive load theory (CLT) offers a framework for optimizing instructional design by managing the mental effort required for learning. This article explores principles from CLT with practical suggestions to create brain-friendly presentations, focusing on intrinsic, extraneous, and germane cognitive loads.
View Article and Find Full Text PDFNano Lett
December 2024
Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.
We report deterministic operations on single dipolar skyrmions confined in nanostructured cuboids by using in-plane currents. We achieve highly reversible writing and deleting of skyrmions in a simple cuboid without any artificial defects or pinning sites. The current-induced creation of skyrmions is well-understood through the spin-transfer torque acting on surface spin twists of the spontaneous 3D ferromagnetic state, caused by the magnetic dipole-dipole interaction of the uniaxial FeSn magnet with a low-quality factor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Beijing Institute of Smart Energy, Beijing 102200, China.
Supramolecular chirality has gained immense attention for great potential, in which the rational engineering strategy facilitates unique helical stacking/assembly, high chiroptical behavior, and prime biomedical activity. In this study, we reported a novel chiral organic donor-acceptor cocrystal based on asymmetrical components of benzo()naphtho(1,2-)thiophene (BNT) and 9-oxo-9H-indeno(1,2-)pyrazine-2,3-dicarbonitrile (DCAF) that exhibited red emission using a simple solution approach. During the self-assembly, a kinetically controlled growth of polar solvent or substrate induction led to the chiral packing and helical morphology twisted by the cooperation of electrostatic potential energy and chirality.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China.
Diamond particles have many interesting properties and possible applications. However, producing diamond particles with well-defined shapes on a large scale is challenging because diamonds are chemically inert and extremely hard. Here, we show that air oxidation, a routine method for purifying diamonds, can be used to precisely shape diamond particles at scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!