We investigate the effect of vibrations on the electronic transport through single-molecule junctions, using the mechanically controlled break junction technique. The molecules under investigation are oligoyne chains with appropriate end groups, which represent both an ideally linear electrical wire and an ideal molecular vibrating string. Vibronic features can be detected as satellites to the electronic transitions, which are assigned to longitudinal modes of the string by comparison with density functional theory data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.200900974DOI Listing

Publication Analysis

Top Keywords

single-molecule junctions
8
molecular wires
4
wires single-molecule
4
junctions charge
4
charge transport
4
transport vibrational
4
vibrational excitations
4
excitations investigate
4
investigate vibrations
4
vibrations electronic
4

Similar Publications

Manipulating π-π Interactions between Single Molecules by Using Antenna Electrodes as Optical Tweezers.

Phys Rev Lett

December 2024

Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China.

Via conductance measurements of thousands of single-molecule junctions, we report that the π-π coupling between neighboring aromatic molecules can be manipulated by laser illumination. We reveal that this optical manipulation originates from the optical plasmonic gradient force generated inside the nanogaps, in which the gapped antenna electrodes act as optical tweezers pushing the neighboring molecules closer together. These findings offer a nondestructive approach to regulate the interaction of the molecules, deepening the understanding of the mechanism of π-π interaction, and open an avenue to manipulate the relative position of extremely small objects down to the scale of single molecules.

View Article and Find Full Text PDF

Intermolecular Interactions and Quantum Interference Effects in Molecular Junctions.

ACS Nanosci Au

December 2024

Department of Chemistry and Nano-Science Center, University of Copenhagen, Copenhagen 2100, Denmark.

Destructive quantum interference (DQI) leads to a decrease in the conductance of certain well-documented molecules. Experimental observations have revealed both direct and indirect manifestations of DQI, although a comprehensive understanding of the underlying causes of these distinct outcomes remains elusive. In both cases, DQI lowers the conductance, but only the direct case exhibits a characteristic V-shaped dip in differential conductance.

View Article and Find Full Text PDF

Revealing Single-Molecule Photocurrent Generation Mechanisms under On- and Off-Resonance Excitation.

Nano Lett

December 2024

Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

We investigate photocurrent generation mechanisms in a pentacene single-molecule junction using subnanometer resolved photocurrent imaging under both on- and off-resonance laser excitation. By employing a wavelength-tunable laser combined with a lock-in technique, net photocurrent signals are extracted to elucidate photoinduced electron tunneling processes. Under off-resonance excitation, photocurrents are found to arise from photon-assisted tunneling, with contributions from three distinct frontier molecular orbitals at different bias voltages.

View Article and Find Full Text PDF

Molecule-electrode interactions are critical for determining transport mechanisms and device functionalities in both single-molecule electrochemistry and electronics. Crucial factors such as anchoring groups and local fields have been studied, but the role of electrolytes and interfacial charge distribution remains largely underexplored. The present research focuses on how the interfacial charge distribution in the electric double layer (EDL) controls single-molecule junctions anchored by azulene.

View Article and Find Full Text PDF

Nucleic acids have emerged as new materials with promising applications in nanotechnology, molecular electronics, and biosensing, but their electronic properties, especially at the single-molecule level, are largely underexplored. The Z-form is an exotic left-handed helical oligonucleotide conformation that may be involved in critical biological processes such as the regulation of gene expression and epigenetic processes. In this work, the electrical conductance of individual Guanine Cytosine (GC)-rich DNA:RNA molecules is measured in physiological buffer and 2,2,2-Trifluoroethanol (TFE) solvent, corresponding to the natural (right-handed helix) A-form typical in DNA:RNA hybrids and the (left-handed) Z-form conformations, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!