Apoptosis is important for embryonic development, tissue homeostasis, and removal of cells with (potentially transforming) DNA lesions or other types of injuries. Functional genomics screens performed to unravel apoptotic signaling cascades in the context of toxicant-induced cell injury commonly use apoptosis as an end-point. Here, a method to detect the accumulation of apoptotic cells in real time that is well suited for high-throughput screens is described. The method uses automated microscopy in a 96-well format setting to visualize binding of fluorescent annexin V to the outer membrane leaflet of apoptotic cells. The automated image acquisition is followed by quantitative analysis using bioinformatics software. A protocol for each of the steps in this kinetic method is described, which includes the caspase-dependent apoptotic response to toxic compounds in multiple cell types and demonstrates that RNAi-based gene silencing of candidate apoptotic regulators affects the apoptosis kinetics as expected. This protocol will be useful for functional genomics as well as chemical (drug) screens.

Download full-text PDF

Source
http://dx.doi.org/10.1002/0471143030.cb1810s47DOI Listing

Publication Analysis

Top Keywords

functional genomics
8
apoptotic cells
8
apoptotic
5
high-throughput live
4
live cell
4
cell imaging
4
apoptosis
4
imaging apoptosis
4
apoptosis apoptosis
4
apoptosis embryonic
4

Similar Publications

Angiogenesis begins as endothelial cells migrate, forming a sprouting tip and subsequent growth-rich stalk cells. Here, we present a protocol for transcriptomic and epigenomic analyses of tip-like cells in cultured endothelial cells. We describe steps for stimulating human umbilical vein endothelial cells (HUVECs) with vascular endothelial cell growth factor (VEGF) to generate tip-like cells.

View Article and Find Full Text PDF

Rice salt tolerance is highly anticipated to meet global demand in response to decreasing farmland and soil salinization. Therefore, dissecting the genetic loci controlling salt tolerance in rice for improving productivity is of utmost importance. Here, we evaluated six salt-tolerance-related traits of a biparental mapping population comprising 280 F2 rice individuals (Oryza sativa L.

View Article and Find Full Text PDF

ABCG2 transporter protein is one of several markers of prostate cancer stem cells (PCSCs). Gene variants of ABCG2 could affect protein expression, function, or both. The aim of this study was to identify the genetic variability of the ABCG2 gene in Mexican patients with prostate cancer.

View Article and Find Full Text PDF

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

Background: Vulvodynia is a multifactorial disease affecting 7%-16% of reproductive-aged women in general population; however, little is still known about the genetics underlying this complex disease.

Aim: To compare polygenic risk scores for hormones and receptors levels in a case-control study to investigate their role in vulvodynia and their correlation with clinical phenotypes.

Methods: Our case-control study included patients with vestibulodynia (VBD) and healthy women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!