Reaction of mixed valence ruthenium tetracarboxylates [Ru(2)(II,III)(R(1)COO)(2)(R(2)COO)(2)Cl] (R(1) = Me, R(2) = 2,4,6-(i)Pr-Ph or R(1) = R(2) = (t)Bu) with two equivalents of the octahedral manganese complex [Mn(I)(CO)(CN)((t)BuNC)(4)] leads to the formation of cyanide bridged heteronuclear coordination compounds of the general formula {[Ru(2)(II,III)(R(1)COO)(2)(R(2)COO)(2)][Mn(I)(CO)(CN)((t)BuNC)(4)](2)}Cl. In solution an intramolecular electron transfer from manganese towards the multiply bonded Ru(2) core occurs that is verified by EPR and IR spectroscopy, magnetic measurements and DFT calculations. Nevertheless, disproportionation of an initially formed {Mn(I)-Ru(2)(II,III)-Mn(I)}(+) adduct into {Mn(II)-Ru(2)(II,III)-Mn(I)}(2+) and {Mn(I)-Ru(2)(II,II)-Mn(I)} species cannot be completely ruled out.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b923536a | DOI Listing |
Anal Chem
January 2025
School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China.
Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).
View Article and Find Full Text PDFMolecules
January 2025
Preclinical Department, Faculty of Medicine & Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia.
2-phenylchromen-4-one, commonly known as flavone, plays multifaceted roles in biological response that can be abundantly present in natural sources. The methoxy group in naturally occurring flavones promotes cytotoxic activity in various cancer cell lines by targeting protein markers, in facilitating ligand-protein binding mechanisms and activating cascading downstream signaling pathways leading to cell death. However, the lipophilic nature of these analogs is a key concern as it impacts drug membrane transfer.
View Article and Find Full Text PDFMolecules
January 2025
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russia.
The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
A novel fluorescent probe, Bibc-DNBS, based on the combination of the PET (photoinduced electron transfer) and ESIPT (excited-state intramolecular proton transfer) mechanisms, was designed and synthesized. Bibc-DNBS exhibited a Stokes shift of 172 nm in the fluorescence detection field. In addition, the probe exhibited good performance in key parameters in bioassays such as sensitivity, specificity, and response time.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
The Nozaki-Hiyama-Kishi reaction offers effective and reliable strategies for the preparation of alcohols via carbon-carbon bond formation. Typical methods usually require stoichiometric amounts of chromium salts, co-transition metals, and auxiliary reagents, which limits their practical application in industrial chemistry. To mitigate these limitations, substantial efforts have been made to develop chromium-catalytic approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!