Dopamine (DA) and serotonin (5HT) are reported to serve important roles in aggression in a wide variety of animals. Previous investigations of 5HT function in adult Drosophila behavior have relied on pharmacological manipulations, or on combinations of genetic tools that simultaneously target both DA and 5HT neurons. Here, we generated a transgenic line that allows selective, direct manipulation of serotonergic neurons and asked whether DA and 5HT have separable effects on aggression. Quantitative morphological examination demonstrated that our newly generated tryptophan hydroxylase (TRH)-Gal4 driver line was highly selective for 5HT-containing neurons. This line was used in conjunction with already available Gal4 driver lines that target DA or both DA and 5HT neurons to acutely alter the function of aminergic systems. First, we showed that acute impairment of DA and 5HT neurotransmission using expression of a temperature sensitive form of dynamin completely abolished mid- and high-level aggression. These flies did not escalate fights beyond brief low-intensity interactions and therefore did not yield dominance relationships. We showed next that manipulation of either 5HT or DA neurotransmission failed to duplicate this phenotype. Selective disruption of 5HT neurotransmission yielded flies that fought, but with reduced ability to escalate fights, leading to fewer dominance relationships. Acute activation of 5HT neurons using temperature sensitive dTrpA1 channel expression, in contrast, resulted in flies that escalated fights faster and that fought at higher intensities. Finally, acute disruption of DA neurotransmission produced hyperactive flies that moved faster than controls, and rarely engaged in any social interactions. By separately manipulating 5HT- and DA- neuron systems, we collected evidence demonstrating a direct role for 5HT in the escalation of aggression in Drosophila.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875409 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010806 | PLOS |
Alzheimers Dement
December 2024
Johns Hopkins University, Baltimore, MD, USA.
Background: By 2050 the number of Alzheimer's Disease (AD) patients is projected to exceed 150 million worldwide. AD is an incurable, insufficiently understood, and devastating neurodegenerative disease, with high patient heterogeneity in terms of progression, clinical manifestation (including neuropsychiatric symptoms, NPS) and, importantly, responsiveness to treatment options.[1] In the last 20 years, 98% of clinical trials for AD have failed, highlighting the urgent need to drastically change pre-clinical research to develop better predictors of drug safety and effectiveness.
View Article and Find Full Text PDFParkinsons Dis
December 2024
School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China.
Cinnamaldehyde (CA), the primary bioactive compound in cinnamon ( Presl, Lauraceae, ), holds potential therapeutic benefits for Parkinson's disease (PD). To scrutinize the impact and mechanisms of CA on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, male C57BL/6 mice were randomly allocated to CA (150, 300, and 600 mg/kg), model, Madopar, and control group ( = 12). The Open Field, Pole-jump, and Rotarod experiments assessed exercise capacity and anxiety levels.
View Article and Find Full Text PDFGastroenterology
December 2024
Department of Clinical Genetics, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands. Electronic address:
Background And Aims: The enteric nervous system (ENS), comprised of neurons and glia, regulates intestinal motility. Hirschsprung disease (HSCR) results from defects in ENS formation, yet while neuronal aspects have been extensively studied, enteric glia remain disregarded. This study aimed to explore enteric glia diversity in health and disease.
View Article and Find Full Text PDFUnlabelled: Pathogenic coding mutations are prevalent in human neuronal transcription factors (TFs) but how they disrupt development is poorly understood. Lmx1b is a master transcriptional regulator of postmitotic neurons that give rise to mature serotonin (5-HT) neurons; over two hundred pathogenic heterozygous mutations have been discovered in human yet their impact on brain development has not been investigated. Here, we developed mouse models with different DNA-binding missense mutations.
View Article and Find Full Text PDFToxicology
December 2024
Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy; Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Via Cherasco 15, Torino 10126, Italy. Electronic address:
Genistein (GEN) is a phytoestrogen with oestrogen-like activity found in many plants. Classified as an endocrine disruptor, GEN is potentially hazardous, particularly during developmental stages. It induces alterations in anxious behaviour, fertility, and energy metabolism, alongside modifications in specific brain circuits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!